Skip to main content
Log in

Synthesis and characterization of BaTi1−xNbxO3 ferroelectric perovskite oxides with tunable band gap, anomalous photovoltage, and enhanced energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we investigated dense BaTi1−xNbxO3 ceramics prepared by the conventional solid-state reaction technique which shows energy storage properties and anomalous photovoltaic effect. Structural analysis of BaTi1−xNbxO3 compositions has been performed by fitting the XRD patterns with Rietveld method and all samples show coexisting tetragonal (P4 mm) and cubic (Pm-3 m) structures. Composition (x = 0.04) shows minimum band gap (2.4 eV), smaller than pure BaTiO3 ceramics which can be attributed to lattice distortion and oxygen vacancies. The improved breakdown strength and energy storage density is achieved for BaTi0.93Nb0.07O3 composition. This ferroelectric ceramic shows energy storage of 278.7 mJ/cm2 and high energy conversion efficiency (90.4%). The composition (x = 0.07) exhibit a very high photovoltage (26 V) under visible light wavelength. These findings provide a fresh approach to create high-performance functional ferroelectric materials for energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015)

    CAS  Google Scholar 

  2. P. Lopez-Varo, L. Bertoluzzi, J. Bisquert, M. Alexe, M. Coll, M. Huang, J.A. Jimenez-Tejada, T. Kirchartz, R. Nechache, F. Rosei, Y. Yuan, Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys. Rep. 653, 1–40 (2016)

    CAS  Google Scholar 

  3. B. Marzougui, Y. Ben Smida, R. Marzouki, D.C. Onwudiwe, Y. Al-Douri, A.H. Hamzaoui, Combustion synthesis, characterization, and photodegradation performance of La2xBixCuO4. Solid State Commun. 364, 115113 (2023)

    CAS  Google Scholar 

  4. V.C.S. Tonya, C.H. Voon, C.C. Lee, B.Y. Lim, S.C.B. Gopinatha, K.L. Foo, M.K.M. Arshad, A.R. Ruslindaa, U. Hashima, M.N. Nashaaine, Y. Al-Dourif, Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube. Mater. Res. 20(6), 1658–1668 (2017)

    Google Scholar 

  5. M.E. Amine Monir, H. Baltach, A. Abdiche, Y. AlDouri, R. Khenata, S.B. Omran, X. Wang, D.P. Rai, A. Bouhemadou, W.K. Ahmed, C.H. Voon, “Doping-induced half-metallic ferromagnetism in vanadium and chromium-doped alkali oxides K2Oand Rb2O: ab initio method. J. Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4021-9

    Article  Google Scholar 

  6. A. Bhatnagar, A.R. Chaudhuri, Y.H. Kim, D. Hesse, M. Alexe, Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013)

    Google Scholar 

  7. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013)

    CAS  PubMed  Google Scholar 

  8. T. Zheng, H. Deng, W. Zhou, X. Zhai, H. Cao, L. Yu, P. Yang, J. Chu, Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping. Ceram. Int. 42, 6033–6038 (2016)

    CAS  Google Scholar 

  9. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison Jr., H.N. Lee, Wide Bandgap tenability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012)

    PubMed  Google Scholar 

  10. C.B. Singh, N.K. Verma, A.K. Singh, Synthesis and band-gap tuning of (Co, Bi) doped PbTiO3 for photoferroelectrics applications. Integr. Ferroelectr. 194, 145 (2018). https://doi.org/10.1080/10584587.2018.1514886

    Article  CAS  Google Scholar 

  11. L. Mühlenbein, C.B. Singh, A. Lotnyk, C. Himcinschi, Y. Yun, N. Ramakrishnegowda, D.S. Knoche, X. Li, A. Bhatnagar, Nanocomposites with three-dimensional architecture and impact on photovoltaic effect. ACS Nano Lett. 20(12), 8789 (2020)

    Google Scholar 

  12. P.S. Brody, Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt.% CaTiO3. Solid State Commun. 12, 673–676 (1973)

    CAS  Google Scholar 

  13. A. Bouhemadou, O. Boudrifa, N. Guechi, R. Khenata, Y. Al-Douri, S. Ugur, B. Ghebouli, S. Bin-Omran, Structural, elastic, electronic, chemical bonding and optical properties of Cu-based oxides ACuO (A = Li, Na, K and Rb): an ab initio study. Comput. Mater. Sci. 81, 561–574 (2014)

    CAS  Google Scholar 

  14. L. Kola, D. Murali, S. Pal, B.R.K. Nanda, P. Murugavel, Enhanced bulk photovoltaic response in Sn doped BaTiO3 through composition dependent structural transformation. Appl. Phys. Lett. 114(18), 183901 (2019)

    Google Scholar 

  15. S. Pal, S. Muthukrishnan, B. Sadhukhan, N.V. Sarath, D. Murali, P. Murugavel, Bulk photovoltaic effect in BaTiO3-based ferroelectric oxides: an experimental and theoretical study. J. Appl. Phys. 129(8), 084106 (2021)

    CAS  Google Scholar 

  16. D. Mala, C.B. Singh, A.K. Singh, Band gap engineering of BaTi1−x(Ni1/3Nb2/3)xO3 ceramics for ferro-photovoltaic applications. IEEE Int. Symp. Appl. Ferroelectr. (2023). https://doi.org/10.1109/ISAF53668.2023.10265387

    Article  Google Scholar 

  17. P. Pal, K. Rudrapal, P. Maji, A.R. Chaudhuri, D. Choudhury, Toward an enhanced room-temperature photovoltaic effect in ferroelectric bismuth and iron codoped BaTiO3. J. Phy. Chem. C 125(9), 5315–5326 (2021)

    CAS  Google Scholar 

  18. L. Yu, X. Zhao, J. He, L. Duan, Y. Wang, Y. Zhang, H. Zhu, High efficient and stable Z-scheme g-C3N4/Zn0.5Cd0.5S photocatalyst driven by visible light for hydrogen evolution. Mater. Sci. Eng. B (2022). https://doi.org/10.1016/j.mseb.2022.116062

    Article  Google Scholar 

  19. L. Yang, Xi. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

    CAS  Google Scholar 

  20. A. Bouhemadou, D. Allali, K. Boudiaf, B. Al Qarni, S. Bin-Omran, R. Khenata, Y. Al-Douri, Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4. J. Alloy. Compd. 774, 299–314 (2019)

    CAS  Google Scholar 

  21. J. Qi, M. Zhang, Y. Chen, Z. Luo, P. Zhao, H. Su, J. Wang, H. Wang, L. Yang, H. Pan, S. Lan, Z.-H. Shen, D. Yi, Y.-H. Lin, High-entropy assisted BaTiO3-based ceramic capacitors for energy storage. Cell Rep. Phys. Sci. 3, 101110 (2022)

    CAS  Google Scholar 

  22. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719–1724 (2009)

    CAS  Google Scholar 

  23. F. Shang, J. Wei, Y. Deng, G. Tang, J. Xu, D. Zhou, H. Xu, G. Chen, A novel route to produce BaTiO3 glass-ceramics with nanosized cubic BaTiO3 phase precipitating for high energy-storage applications. J. Eur. Ceram. Soc. 43(8), 3307–3317 (2023)

    CAS  Google Scholar 

  24. S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun. 191, 19–24 (2014)

    CAS  Google Scholar 

  25. Millicent B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 130, 6955–6963 (2008)

    CAS  PubMed  Google Scholar 

  26. R.A. Young, The Rietveld method. Phys. Scr. (1993). https://doi.org/10.1088/0031-8949/89/9/098002

    Article  Google Scholar 

  27. E. Brzozowski, M.S. Castro, Grain growth control in Nb-doped BaTiO3. J. Mater. Process. Technol. 168, 464–470 (2005)

    CAS  Google Scholar 

  28. L. Srisombat, S. Ananta, B. Singhana, T. Randall Leed, R. Yimnirun, Chemical investigation of Fe3+/Nb5+-doped barium titanate ceramics. Ceram. Int. 39, S591–S594 (2013)

    CAS  Google Scholar 

  29. K.K. Rahangdale, S. Ganguly, Effect of oxygen vacancies on the dielectricity of Ga doped equimolar BiMnO3–BaTiO3 characterized by XPS analysis. Phys. B. Condens. Matter 626, 413570 (2022)

    CAS  Google Scholar 

  30. V.S. Siril, P.V.I. Ali, K.N. Madhusoodanan, Sol–Gel synthesis and investigation of dielectric behaviour in barium stannate. Mater. Today Proc. 62, 530–534 (2022)

    CAS  Google Scholar 

  31. V. Craciun, R.K. Singh, Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation. Appl. Phys. Lett. 76, 1932–1934 (2000)

    CAS  Google Scholar 

  32. A. Majjane, A. Chahine, M. Et-tabirou, B. Echchahed, T.O. Do, P. Mc Breen, X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Mater. Chem. Phys. 143, 779–787 (2014)

    CAS  Google Scholar 

  33. J.X. Liao, C.R. Yang, Z. Tian, H.G. Yang, L. Jin, The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D Appl. Phys. 39, 2473–2479 (2006)

    CAS  Google Scholar 

  34. S.M. Mukhopadhyay, T.C.S. Chen, Surface chemical states of barium titanate: influence of sample processing. J. Mater. Res. 10, 6 (1995)

    Google Scholar 

  35. H. Jena, V.K. Mittal, S. Bera, S.V. Narasimhan, K.V.G. Kutty, T.R.N. Kutty, X-ray photoelectron spectroscopic investigations on cubic BaTiO3, BaTi0.9Fe0.1O3 and Ba0.9Nd0.1TiO3 systems. Appl. Surf. Sci. 254, 7074–7079 (2008)

    CAS  Google Scholar 

  36. M. Ishfaq, M. Rizwan Khan, M.F. Bhopal, F. Nasim, A. Ali, A.S. Bhatti, I. Ahmed, S. Bhardwaj, C. Cepek, 1.5MeV proton irradiation effects on electrical and structural properties of TiO2/n-Si interface. J. Appl. Phys. 115(17), 174506 (2014)

    Google Scholar 

  37. H.Y. Lin, C.Y. Shih, Efficient one-pot microwave-assisted hydrothermal synthesis of M (M = Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J. Mol. Catal. A Chem. 411, 128–137 (2015)

    Google Scholar 

  38. L.N. Mazalov, A.D. Fedorenko, A.L. Gushchin, M.N. Sokolov, P.A. Petrov, S.A. Dalmatova, A.V. Gusel’nikov, A.V. Kalinkin, Investigation of electronic structure of {Nb2S4}4+ clusters by XES, XPS and DFT calculations. Polyhedron 153, 268–277 (2018)

    CAS  Google Scholar 

  39. T.J. Frankcombe, Y. Liu, Interpretation of oxygen 1s X-ray photoelectron spectroscopy of ZnO. Chem. Mater. 35, 5468–5474 (2023)

    CAS  Google Scholar 

  40. K. Siemek, A. Olejniczak, L.N. Korotkov, P. Konieczny, A.V. Belushkin, Investigation of surface defects in BaTiO3 nanopowders studied by XPS and positron annihilation lifetime spectroscopy. Appl. Surf. Sci. 578, 151807 (2022)

    CAS  Google Scholar 

  41. S. Sagadevan, S. Vennila, A.R. Marlinda, Y. Al-Douri, M. Rafie Johan, J. Anita Lett, Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles. Appl. Phys. A 125, 489 (2019)

    CAS  Google Scholar 

  42. L. Mühlenbein, C.B. Singh, A.K. Singh, I. Fina, C. Himcinschi, A. Lotnyk, A. Bhatnagar, Control of layering in aurivillius phase nanocomposite thin films and influence on ferromagnetism and optical absorption. ACS Appl. Electron. Mater. 4, 1997–2004 (2022)

    Google Scholar 

  43. Y. Al-Douria, K. Gherabd, K.M. Batooe, E.H. Raslanf, Detecting the DNA of dengue serotype 2 using aluminium nanoparticle doped zinc oxide nanostructure: synthesis, analysis and characterization. J Mater Technol. 9(3), 5515–5523 (2020)

    Google Scholar 

  44. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    CAS  Google Scholar 

  45. C.B. Singh, D. Kumar, N.K. Verma, A.K. Singh, Structural, dielectric, semiconducting and optical properties of high-energy ball milled YFeO3 nanoparticles. AIP Conf. Proc. 2115(1), 030619 (2019). https://doi.org/10.1063/1.5113458

    Article  CAS  Google Scholar 

  46. C.B. Singh, N.K. Verma, A.K. Singh, Synthesis, structural and semiconducting properties of Ba(Cu1/3Sb2/3)O3-PbTiO3 solid solutions. AIP Conf. Proc. 1953, 050041 (2018). https://doi.org/10.1080/10584587.2018.1514886

    Article  CAS  Google Scholar 

  47. M.A. Zhi, M.A. Yanam, F. Zheng, H. Gao, H. Liu, H. Chen, Modeling of hysteresis loop and its applications in ferroelectric materials. Ceram. Int. 44(4), 4338–4434 (2018)

    Google Scholar 

  48. W. Shi, L. Zhang, R. Jing, Q. Hu, X. Zeng, D.O. Alikin, V.Y. Shur, X. Wei, J. Gao, G. Liu, Y. Yan, L. Jin, Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. J. Eur. Ceram. Soc. 42, 4528–4538 (2022)

    CAS  Google Scholar 

  49. Y. Lin, D. Li, M. Zhang, S. Zhan, Y. Yang, H. Yang, Q. Yuan, Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS Appl. Mater. Interfaces 11, 36824–36830 (2019)

    CAS  PubMed  Google Scholar 

  50. Q. Jin, L. Zhao, B. Cui, J. Wang, H. Ma, R. Zhang, Ye. Liua, X. Zhanga, Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains: via a core-shell structural design. J. Mater. Chem. C 8, 5248–5258 (2020)

    CAS  Google Scholar 

  51. V.P. Singh, C.B. Singh, S.K. Satyarthi, D. Kumar, A.K. Singh, Highly enhanced energy storage properties of H2O2-hydroxylated rare earth ferrites (LaFeO3 and GdFeO3) nanofillers in poly(vinylidene fluoride)-based nanocomposite films. J. Mater. Sci. Mater. Electron. 33, 20170–20184 (2022)

    CAS  Google Scholar 

  52. Y. Li, Yi. Liu, M. Tang, J. Lv, F. Chen, Q. Li, Y. Yan, F. Wuc, Li. Jin, G. Liu, Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process. Chem. Eng. J. 419, 129673 (2021)

    CAS  Google Scholar 

  53. Y.B. Adediji, A.M. Adeyinka, D.I. Yahya, O.V. Mbelu, A review of energy storage applications of lead-free BaTiO3-based dielectric ceramic capacitors. Energy Ecol. Environ. 8, 401–419 (2023)

    CAS  Google Scholar 

  54. V.P. Singh, S.K. Satyarthi, A. Dwivedi, A. Dwivedi, A.K. Singh, Boosting energy storage of poly(vinylidene difluoride) nanocomposite based flexible self-standing film with low amount of hydroxylated V2O5. ACS Appl. Energy Mater. 5, 12837–12850 (2022)

    CAS  Google Scholar 

  55. A. Jain, Y.G. Wang, L.N. Shi, Recent developments in BaTiO3 based lead-free materials for energy storage applications. J. Alloys Compd. 928, 167066 (2022)

    CAS  Google Scholar 

  56. H. Zhao, X. Yang, D. Pang, X. Long, Enhanced energy storage efficiency by modulating field-induced strain in BaTiO3-Bi(Ni2/3Ta1/3)O3 lead-free ceramics. Ceram. Int. 47, 22734–22740 (2021)

    CAS  Google Scholar 

  57. Li. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    CAS  Google Scholar 

  58. V. Pal, D. Kumar, A.K. Singh, Crystal structure, microstructure, and ultra-high energy storage properties of lead-free (x)Bi(Mg0.5Ti0.5O3-(1 − x)[0.50Ba(Zr0.2Ti0.8)O3-0.50(Ba0.7Ca0.3) TiO3] ternary ceramics. Mater. Sci. Eng. B 288, 116194 (2023)

    CAS  Google Scholar 

  59. S. Pal, A.B. Swain, P.P. Biswas, D. Murali, A. Pal, B.R.K. Nanda, P. Murugavel, Giant photovoltaic response in band engineered ferroelectric perovskite. Sci. Rep. 8, 8005 (2018)

    PubMed  PubMed Central  Google Scholar 

  60. G. Zhang, H. Wu, G. Li, Q. Huang, C. Yang, F. Huang, F. Liao, J. Lin, New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 3, 1265 (2013)

    PubMed  PubMed Central  Google Scholar 

  61. X. Qi, K. Li, E. Sun, B. Song, D. Huo, J. Li, X. Wang, R. Zhang, B. Yang, W. Cao, Large photovoltaic effect with ultrahigh open-circuit voltage in relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J. Mater. Sci. Technol. 104, 119–126 (2022)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Deep Mala contributed to methodology, visualization, data curation and analysis, investigation, and writing, reviewing, & editing of the manuscript. Chandra Bhal Singh contributed to conceptualization, methodology, visualization, data curation and analysis, investigation, and writing and reviewing of the manuscript. Akhilesh Kumar Singh contributed to methodology, visualization, data curation, resources, and reviewing & editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Akhilesh Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest/competing interests.

Research involving human and animal rights

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mala, D., Singh, C.B. & Singh, A.K. Synthesis and characterization of BaTi1−xNbxO3 ferroelectric perovskite oxides with tunable band gap, anomalous photovoltage, and enhanced energy storage. J Mater Sci: Mater Electron 35, 912 (2024). https://doi.org/10.1007/s10854-024-12636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12636-y

Navigation