Skip to main content
Log in

Preparation and Adsorption Properties of Lanthanide Ion Surface-Imprinted Polymer Based on Reaming MCM-41

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, APTES was used as the functional monomer, reamed MCM-41 was used as the carrier, and epichlorohydrin was used as the crosslinking agent to prepare the Lanthanide ion-imprinted polymer, La-IIP. The effects of pH, time, temperature, and initial concentration on La-IIP adsorption were investigated, and the adsorption mechanism was discussed by fitting the adsorption data to various kinetic and thermodynamic models. The results showed that La-IIP reached adsorption equilibrium in 20 min at 338 K and pH = 5, and the maximum adsorption capacity was 272.2 mg/g. The La-IIP adsorption process conformed to the Langmuir adsorption model, and La-IIP showed strong selectivity for La(III) in the presence of interfering ions with similarproperties. 2 M hydrochloric acid solution was used to eluate La-IIP and re-adsorb lanthanum ion solution. After elution of La-IIP for five times, the adsorption remained at the initial value of 81%. It shows that La-IIP has stability and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Nicodemus, K.F. Salifu, D.F. Jacobs, Influence of lanthanum level and interactions with nitrogen source on early development of Juglans nigra. J. Rare Earths 27(02), 270–279 (2009)

    Article  Google Scholar 

  2. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46(17), 26548–26556 (2020)

    Article  CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, Z. Salehi, O. Amiri, M. Salavati-Niasari, Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd. 791, 792–799 (2019)

    Article  CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46(5), 6095–6107 (2020)

    Article  CAS  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 179, 77–85 (2017)

    Article  CAS  Google Scholar 

  6. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. J. Mater. Sci.: Mater. Electron. 26(8), 5812–5821 (2015)

    CAS  Google Scholar 

  7. M. Monier, A.A. Ibrahim, M. Metwally, D. Badawy, Surfaceion-imprinted amino-functionalized cellulosic cotton fibers for selective extraction of Cu(II) ions. Int. J. Biol. Macromol. 81, 736–746 (2015)

    Article  CAS  Google Scholar 

  8. D. Gao, Z. Zhang, M. Wu, C. Xie, G. Guan, D. Wang, A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc. 129, 7859–7866 (2007)

    Article  CAS  Google Scholar 

  9. L. Xiancai, X. Qian, T. Minglei, W. Xiu, Y. Yifeng, Preparation of lanthanum ion imprinted polymer on the surface of MCM-41 modified by aldehyde group and its adsorption and separation of lanthanum ions. Ion Exch. Adsorpt. 34(02), 105–115 (2018)

    Google Scholar 

  10. W. Wang, Y. Li, B. Gao et al., Effective removal of Fe(II) impurity from rare earth solutionusing surface imprinted polymer. Chem. Eng. Res. Des. 91, 2759–2764 (2013)

    Article  CAS  Google Scholar 

  11. H. Zhao yong, Preparation of surface ion imprinted polymer based on mesoporous silica material and study on its selective separation for heavy metal ions. Jiangsu Univ. Sci. Technol. (2015)

  12. D. Macquarrie, D. Jackson, J.G. Mdoe, J.H. Clark, Organomodifed hexagonal mesoporous silicates. New J. Chem. 23, 539–544 (1999)

    Article  CAS  Google Scholar 

  13. H. Dedong, H. Husheng, C. Dingkai et al., Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition. Catal. Today 281(3), 559–565 (2017)

    Google Scholar 

  14. J. Wang, J. Wei, J. Li et al., Straw-supported ion imprinted polymer sorbent prepared by surface imprinting technique combined with AGET ATRP for selective adsorption of La3+ ions. Chem. Eng. J. 293, 24–33 (2016)

    Article  CAS  Google Scholar 

  15. Li. Xiancai, Z. Song, T. Minglei, Preparation and adsorption properties of rhodium ion imprinted polymer Rh-IIP-MAA/MCM-41. J. Nanchang Univ. (Science Edition) 44(02), 143–147 (2020)

    Google Scholar 

  16. M. Li, C. Feng, M. Li et al., Synthesis and application of a surface-grafted In (III) ion-imprinted polymer for selective separation and pre-concentration of indium (III) ion from aqueous solution. Hydrometallurgy (2015). https://doi.org/10.1016/j.hydromet.2015.03.011

    Article  Google Scholar 

  17. X.M. Zheng, R.Y. Fan, Z.K. Xu, Preparation and property evaluation of Pb(II) ion-imprinted composite membranes. Acta Polym. Sin. 05, 561–570 (2012)

    Article  Google Scholar 

  18. X. Song, Y. Zhang, C. Yan et al., The Langmuir monolayer adsorption model of organic matter into effective pores in activated carbon. J. Colloid Interface Sci. 389(1), 213–219 (2013)

    Article  CAS  Google Scholar 

  19. Li. Xiancai, Hu. Yue Longlong, Z.S. Quanhong, T. Minglei, Adsorption kinetics and thermodynamics of Rhodium ions on RH-IIP-MAA /MCM-41 imprinted polymer. J. Nanchang Univ. (Engineering Science) 41(04), 307–311 (2019)

    Google Scholar 

  20. J.J. Chen, K.M. Fang, Y.Q. Miao et al., Study on adsorption of Co(II) and Ni(II) onto mesoporous Ti- containing MCM-48. J. Nanosci. Nanotechnol. 11, 1–8 (2011)

    Article  Google Scholar 

  21. Li. Chuangju, Study on the Adsorption of Functionalized Mesoporous Material MCM-41 toward Copper Ion in the Wastewater (ChongQi University, Chongqing, 2010)

    Google Scholar 

  22. L. Firdaous, B. Fertin, O. Khelissa et al., Adsorptive removal of polyphenols from an alfalfa white proteins concentrate: adsorbent screening, adsorption kinetics and equilibrium study. Sep. Purif. Technol. 178, 29–39 (2017)

    Article  CAS  Google Scholar 

  23. C. Rui, Preparation of Surface Ion-Imprinted Polymer Based on SBA-15 and Study on Its Selective Separation Properties for Low and Medium Radioactive Metal (Jiangsu University of Science and Technology, Zhenjiang, 2014)

    Google Scholar 

  24. M. Akram, H.N. Bhatti, M. Iqbal et al., Biocomposite efficiency for Cr(VI) adsorption: kinetic, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 5(1), 400–411 (2017)

    Article  CAS  Google Scholar 

  25. Z. Ye, D. Chen, Z. Pan et al., An improved Langmuir model for evaluating methane adsorption capacity in shale under various pressures and temperatures. J. Nat. Gas Sci. Eng. 31, 658–680 (2016)

    Article  CAS  Google Scholar 

  26. X. Qian, The Preparation of Antimony Ionic Imprinted Polymers and Theiradsorption Properties for Antimony Ions (NanChang University, Nanchang, 2018)

    Google Scholar 

  27. M.A. Shaker, Adsorption of Co(II), Ni(II) and Cu(II) ions onto chitosan-modified poly(methacrylate) nanoparticles: dynamics, equilibrium and thermodynamics studies. J. Taiwan Inst. Chem. Eng. 57, 111–122 (2015)

    Article  CAS  Google Scholar 

  28. L. Xiancai, T. Minglei, C. Yuwen, W. Xiu, Preparation and characterization of lanthanide MCM-41 imprinted polymers. J. Nanchang Univ. (Engineering Science) 40(4), 307–311 (2018)

    Google Scholar 

  29. B. Wang, D. Zhang, Z. Shi, T. Wu, Thermodynamics analysis of cesium adsorption on Na2Ti2O3SiO4·2H2O. J. Isot. 25(1), 42–46 (2012)

    Google Scholar 

  30. Q. Fu, Y. Deng, H. Li et al., Equilib-rium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis, subsp. kurstaki, by clay minerals. Appl. Surf. Sci. 255(8), 4551–4557 (2009)

    Article  CAS  Google Scholar 

  31. B. Gao, Y. Zhang, Y. Xu et al., Study on recognition and separation of rare earth ions at picometre scale by using efficient ion-surface imprinted polymer materials. Hydrometallurgy 150, 83–91 (2014)

    Article  CAS  Google Scholar 

  32. Z. Adibmehr, H. Faghihian, Preparation of highly selective magnetic cobalt ion-imprinted polymer based on functionalized SBA-15 for removal Co2+ from aqueous solutions. J. Environ. Health Sci. Eng. 17(2), 1213–1225 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Nature Science Foundation of China (51664042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiancai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, ., Wang, X., Shi, M. et al. Preparation and Adsorption Properties of Lanthanide Ion Surface-Imprinted Polymer Based on Reaming MCM-41. J Inorg Organomet Polym 32, 161–168 (2022). https://doi.org/10.1007/s10904-021-02108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02108-9

Keywords

Navigation