Skip to main content
Log in

Significant Enhanced Optical Parameters of PVA-Y2O3 Polymer Nanocomposite Films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In our present work, PVA-Y2O3 nanocomposite films were prepared based on solution casting technique. The structures of the nanocomposite films were examined by XRD and FTIR spectroscopy. From the XRD analysis, it is found that the films are semi-crystalline and Y2O3 nanoparticles have cubic crystal structure. The average crystal size estimated via Scherer formula was 25 nm while W–H plot method gives 28 nm. FTIR spectra of all nanocomposite films exhibited good interaction between nano-Y2O3 and the PVA network. The morphological images obtained from SEM microscopy indicated good distribution of nano-Y2O3. Optical absorption spectra of the films enhanced with the incorporation of Y2O3. As the percentage of Y2O3 added increased, the direct optical energy gap, decreased from 5.42 to 5.31 eV. While the static refractive index, dispersion energy, third order optical susceptibility, nonlinear refractive index and optical conductivity increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.A. Hassan, H. Hu, Current status of polymer nanocomposite dielectrics for high-temperature applications. Composites Part A 138, 106064 (2020)

    Article  Google Scholar 

  2. M. Gong, L. Zhang, P. Wan, Polymer nanocomposite meshes for flexible electronic devices. Prog. Polym. Sci. 107, 101279 (2020)

    Article  CAS  Google Scholar 

  3. J. Loste, J.M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog. Polym. Sci. 89, 133–158 (2019)

    Article  CAS  Google Scholar 

  4. T.A. Taha, S.A. Saad, Processing, thermal and dielectric investigations of polyester nanocomposites based on nano-CoFe2O4. Mater. Chem. Phys. 255, 123574 (2020)

    Article  CAS  Google Scholar 

  5. T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M.K. El-Mansy, Fluorescence and dielectric spectroscopy identification of polyvinyl chloride/NiO nanocomposites. J. Mol. Struct. 1212, 128162 (2020)

    Article  CAS  Google Scholar 

  6. A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 77, 6005–6016 (2020)

    Article  CAS  Google Scholar 

  7. B.P. Frank, D.G. Goodwin Jr., P. Bohutskyi, D.C. Phan, X. Lu, L. Kuwama et al., Influence of polymer type and carbon nanotube properties on carbon nanotube/polymer nanocomposite biodegradation. Sci. Total Environ. 742, 140512 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. M.B. Mohamed, M.H. Abdel-Kader, Effect of annealed ZnS nanoparticles on the structural and optical properties of PVA polymer nanocomposite. Mater. Chem. Phys. 241, 122285 (2020)

    Article  CAS  Google Scholar 

  9. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J. Electron. Mater. 48(10), 6797–6806 (2019)

    Article  CAS  Google Scholar 

  10. T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Dielectric spectroscopy of PVA-Ni0.5Zn0.5Fe2O4 polymer nanocomposite films. J. Asian Ceram. Soc. 8(4), 1076–1082 (2020)

    Article  Google Scholar 

  11. G.M. Aparicio, R.A. Vargas, P.R. Bueno, Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. J. Non-Cryst. Solids 522, 119520 (2019)

    Article  CAS  Google Scholar 

  12. S. Ningaraju, A.G. Prakash, H.B. Ravikumar, Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites. Solid State Ionics 320, 132–147 (2018)

    Article  CAS  Google Scholar 

  13. A. Kasikov, Optical inhomogeneity model for evaporated Y2O3 obtained from physical thickness measurement. Appl. Surf. Sci. 254(12), 3677–3680 (2008)

    Article  CAS  Google Scholar 

  14. H. Guo, Y.M. Qiao, Preparation, characterization, and strong upconversion of monodisperse Y2O3: Er3+, Yb3+ microspheres. Opt. Mater. 31(4), 583–589 (2009)

    Article  CAS  Google Scholar 

  15. A. Ubaldini, M.M. Carnasciali, Raman characterisation of powder of cubic RE2O3 (RE= Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3. J. Alloy Compd. 454(1–2), 374–378 (2008)

    Article  CAS  Google Scholar 

  16. H. Donya, T.A. Taha, A. Alruwaili, I.B.I. Tomsah, M. Ibrahim, Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites. J. Mater. Res. Technol. 9(4), 9189–9194 (2020)

    CAS  Google Scholar 

  17. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, SHI irradiated PVA/Ag nanocomposites and possibility of UV blocking. Opt. Mater. 52, 237–241 (2016)

    Article  CAS  Google Scholar 

  18. I. Morad, A.M. Alshehri, A.F. Mansour, M.H. Wasfy, M.M. El-Desoky, Facile synthesis and comparative study for the optical performance of different TiO2 phases doped PVA nanocomposite films. Physica B 597, 412415 (2020)

    Article  CAS  Google Scholar 

  19. M. Rashad, Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Opt. Mater. 105, 109857 (2020)

    Article  CAS  Google Scholar 

  20. M. Pattabi, A.B. Saraswathi, Optical properties of CdS–PVA nanocomposites. Compos. Interfaces 17(2–3), 103–111 (2010)

    Article  CAS  Google Scholar 

  21. G. Seeta Rama Raju, S. Buddhudu, A. Varada Rajulu, Red emission from Eu3+: PVA polymer film. J. Appl. Polym. Sci. 102(4), 3273–3276 (2006)

    Article  Google Scholar 

  22. O.G. Abdullah, D.A. Tahir, K. Kadir, Optical and structural investigation of synthesized PVA/PbS nanocomposites. J. Mater. Sci.: Mater. Electron. 26(9), 6939–6944 (2015)

    CAS  Google Scholar 

  23. Z.K. Heiba, M.B. Mohamed, N.G. Imam, N.Y. Mostafa, Optical and electrical properties of quantum composite of polyvinyl alcohol matrix with CdSe quantum dots. Colloid Polym. Sci. 294(2), 357–365 (2016)

    Article  CAS  Google Scholar 

  24. K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater. Res. Bull. 51, 438–446 (2014)

    Article  CAS  Google Scholar 

  25. K. Jayasankar, A. Pandey, B.K. Mishra, S. Das, Evaluation of microstructural parameters of nanocrystalline Y2O3 by X-ray diffraction peak broadening analysis. Mater. Chem. Phys. 171, 195–200 (2016)

    Article  CAS  Google Scholar 

  26. J.Y. Jeong, S.W. Park, D.K. Moon, W.J. Kim, Synthesis of Y2O3 nano-powders by precipitation method using various precipitants and preparation of high stability dispersion for backlight unit (BLU). J. Ind. Eng. Chem. 16(2), 243–250 (2010)

    Article  CAS  Google Scholar 

  27. T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Micro-structure, thermal, and dielectric performance of polyester nanocomposites containing nano-Ni0.5Zn0.5Fe2O4. Appl. Phys. A 126(9), 1–10 (2020)

  28. T.A. Taha, M.M. El-Molla, Green simple preparation of LiNiO2 nanopowder for lithium ion battery. J. Mater. Res. Technol. 9(4), 7955–7960 (2020)

    CAS  Google Scholar 

  29. T.A. Taha, A.A. Azab, E.H. El-Khawas, Comprehensive study of structural, magnetic and dielectric properties of Borate/Fe3O4 glass nanocomposites. J. Electron. Mater. 49(2), 1161–1166 (2020)

    Article  CAS  Google Scholar 

  30. M.H. Mahmoud, T.A. Taha, FTIR and Mössbauer spectroscopy investigations of Ag/FexAl2−xO3 nanocomposites. J. Electron. Mater. 48(11), 7396–7403 (2019)

    Article  CAS  Google Scholar 

  31. Y. Yulizar, D.O.B. Apriandanu, J.L. Al Jabbar, Facile one-pot preparation of V2O5-Fe2O3 nanocomposites using Foeniculum vulgare extracts and their catalytic property. Inorg. Chem. Commun. 123, 108320 (2021)

    Article  CAS  Google Scholar 

  32. Y. Yulizar, D.O.B. Apriandanu, F.L. Hakim, Two-phase synthesis in n-hexane–water, characterization, and photocatalytic activity of ZnO/Bi2Sn2O7 nanocomposite. JOM 73(1), 441–449 (2021)

    Article  CAS  Google Scholar 

  33. R.M. Surya, Y. Yulizar, A.H. Cahyana, D.O.B. Apriandanu, One-pot Cajanus cajan (L.) Millsp. leaf extract-mediated preparation of MgFe2O4 nanoparticles: optical, structural, morphological and particle size analyses. Solid State Commun. 326, 114170 (2021)

    Article  CAS  Google Scholar 

  34. H.A. Ariyanta, T.A. Ivandini, Y. Yulizar, Novel NiO nanoparticles via phytosynthesis method: Structural, morphological and optical properties. J. Mol. Struct. 1227, 129543 (2021)

    Article  CAS  Google Scholar 

  35. Y. Yulizar, A. Eprasatya, D.O.B. Apriandanu, R.T. Yunarti, Facile synthesis of ZnO/GdCoO3 nanocomposites, characterization and their photocatalytic activity under visible light illumination. Vacuum 183, 109821 (2021)

    Article  CAS  Google Scholar 

  36. F.L. Hakim, Y. Yulizar, D.O.B. Apriandanu, Phase system of hexane-water for SnO2 nanoparticles preparation using Cassia alata leaf extract and its photocatalytic activity. In IOP Conference Series: Materials Science and Engineering (Vol. 902, No. 1, p. 012016). IOP Publishing (2020)

  37. K. Mustofa, Y. Yulizar, A. Saefumillah, D.O.B. Apriandanu, La2O3 nanoparticles formation using Nothopanax scutellarium leaf extract in two-phase system and photocatalytic activity under UV light irradiation. In IOP Conference Series: Materials Science and Engineering (Vol. 902, No. 1, p. 012018). IOP Publishing. (2020)

  38. T.A. Taha, A.A. Azab, M.A. Sebak, Glycerol-assisted sol-gel synthesis, optical, and magnetic properties of NiFe2O4 nanoparticles. J. Mol. Struct. 1181, 14–18 (2019)

    Article  CAS  Google Scholar 

  39. T.A. Taha, Z. Ismail, M.M. Elhawary, Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124(4), 307 (2018)

    Article  Google Scholar 

  40. E.E. Abdel-Hady, H.F. Mohamed, M.O. Abdel-Hamed, M.M. Gomaa, Physical and electrochemical properties of PVA/TiO2 nanocomposite membrane. Adv. Polym. Technol. 37(8), 3842–3853 (2018)

    Article  CAS  Google Scholar 

  41. D.O.B. Apriandanu, Y. Yulizar, CuO-bentonite-gold nanocomposites: Facile green preparation and their characterization. Mater. Lett. 284, 128911 (2021)

    Article  CAS  Google Scholar 

  42. A. Eprasatya, Y. Yulizar, R.T. Yunarti, D.O.B. Apriandanu, Fabrication of Gd2O3 nanoparticles in hexane-water system using Myristica fragrans Houtt leaves extract and their photodegradation activity of malachite green. In IOP Conference Series: Materials Science and Engineering (Vol. 902, No. 1, p. 012004). IOP Publishing. (2020)

  43. Putri, N., Yulizar, Y., Umar, A., & Apriandanu, D. O. B. (2020, July). Sm2O3 nanoparticles preparation using caesalpinia pulcherrima leaf extract, characterization and photocatalytic activity. In IOP Conference Series: Materials Science and Engineering (Vol. 902, No. 1, p. 012012). IOP Publishing.

  44. Syahfitri, T. W. W., Yulizar, Y., Gunlazuardi, J., & Apriandanu, D. O. B. (2020, July). TiO2/Co3O4 nanocomposite: Synthesis via Catharanthus roseus (L.) G. Don leaf extract, characterization and its photocatalytic activity for malachite green degradation. In IOP Conference Series: Materials Science and Engineering (Vol. 902, No. 1, p. 012003). IOP Publishing.

  45. J.W. Rhim, C.K. Yeom, S.W. Kim, Modification of poly (vinyl alcohol) membranes using sulfur-succinic acid and its application to pervaporation separation of water–alcohol mixtures. J. Appl. Polym. Sci. 68(11), 1717–1723 (1998)

    Article  CAS  Google Scholar 

  46. C.P. Liu, C.A. Dai, C.Y. Chao, S.J. Chang, Novel proton exchange membrane based on crosslinked poly (vinyl alcohol) for direct methanol fuel cells. J. Power Sources 249, 285–298 (2014)

    Article  CAS  Google Scholar 

  47. Aziz SB, Hassan AQ, Mohammed SJ, Karim WO, FZ Kadir M, A Tajuddin H, NMY Chan N, Structural and optical characteristics of PVA: C-Dot composites: Tuning the absorption of ultra violet (UV) region. Nanomaterials, 9(2), 216 (2019)

  48. X. Xu, R. Lu, X. Zhao, S. Xu, X. Lei, F. Zhang, D.G. Evans, Fabrication and photocatalytic performance of a ZnxCd1− xS solid solution prepared by sulfuration of a single layered double hydroxide precursor. Appl. Catal. B 102(1–2), 147–156 (2011)

    Article  CAS  Google Scholar 

  49. N. Ghobadi, Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3(1), 2 (2013)

    Article  Google Scholar 

  50. F. Yakuphanoglu, H. Erten, Refractive index dispersion and analysis of the optical constants of an ionomer thin film. Opt. Appl. 35(4) (2005)

  51. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139(2–3), 802–810 (2013)

    Article  CAS  Google Scholar 

  52. B. Gündüz, Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym. Bull. 72(12), 3241–3267 (2015)

    Article  Google Scholar 

  53. F.A. Wahab, F. El-Diasty, M. Abdel-Baki, Dispersion dependence of second-order refractive index and complex third-order optical susceptibility in oxide glasses. Phys. Lett. A 373(42), 3855–3860 (2009)

    Article  Google Scholar 

  54. F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Determination and analysis of the dispersive optical constants of some organic thin films. Physica B 351(1), 53–58 (2004)

    Article  CAS  Google Scholar 

  55. T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M.K. El-Mansy, Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76(9), 4769–4784 (2019)

    Article  CAS  Google Scholar 

  56. F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material. J. Phys. Chem. Solids 69(7), 1820–1828 (2008)

    Article  CAS  Google Scholar 

  57. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications Inc., New York, 1975), p. 91

    Google Scholar 

  58. T.A. Taha, Optical properties of PVC/Al2O3 nanocomposite films. Polym. Bull. 76(2), 903–918 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Central laboratory at Jouf University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrowaili, Z.A., Taha, T.A., El-Nasser, K.S. et al. Significant Enhanced Optical Parameters of PVA-Y2O3 Polymer Nanocomposite Films. J Inorg Organomet Polym 31, 3101–3110 (2021). https://doi.org/10.1007/s10904-021-01995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01995-2

Keywords

Navigation