Skip to main content
Log in

Studies on Borosiloxane Oligomers from Mixtures of Vinyltriethoxysilane and Phenyltrialkoxysilanes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polycondensation of boric acid (BA) with mixtures of phenyltriethoxysilane (PTEOS) and vinyltriethoxysilane (VTEOS) and with mixtures of phenyltrimethoxysilane (PTMOS) and vinyltriethoxysilane (VTEOS) in diglyme at 83–87 °C using HCl as catalyst resulted in vinyl-functionalized borosiloxane oligomers. Effect of variation of PTEOS:VTEOS and PTMOS:VTEOS ratio (keeping BA:alkoxysilanes ratio constant) and the effect of variation of BA:alkoxysilane (BA:PTEOS:VTEOS and BA:PTMOS:VTEOS) ratio on the solubility, thermal stability and ceramic residue were studied. The oligomers obtained were characterized by FTIR, GPC, pyrolysis GC and TGA. For PTEOS + VTEOS system all the oligomers were soluble in the reaction medium, but after removal of alcohol (byproduct) and diglyme (solvent), the oligomers obtained in the solid form were insoluble in common organic solvents. Unlike the PTEOS-based system, for PTMOS-based system the oligomers synthesized from monomer feed ratios (BA:PTMOS:VTEOS) 1:1:1 and 1:1.67:0.33 even after the removal of ethanol and diglyme are soluble in tetrahydrofuran, dioxane and diglyme. These two soluble oligomers show bimodal molecular weight distribution with \(\overline{{\text{M}}}_{{_{{\text{W}}} }}\) of 3,650 and \({\overline{\text{M}}}_{{\text{n}}}\) of 1860 for 1:1:1 mol ratio, and \(\overline{{\text{M}}}_{{_{{\text{W}}} }}\) of 2,540 and \({\overline{\text{M}}}_{{\text{n}}}\) of 1700 for 1:1.67:0.33 mol ratio. 29Si-NMR spectra of the soluble oligomers show peaks at − 69 and − 78 ppm which are attributed to T2 and T3 structures respectively. Thermogravimetric analysis of vinyl-functionalized borosiloxane oligomers from PTEOS and PTMOS indicates that the ceramic residue of the oligomers in argon atmosphere at 900 °C varies from 68 to 89% depending on the monomer feed ratio of BA to organoalkoxysilane ratio and phenyltrialkoxysilane to VTEOS ratio. With the increase in concentration of VTEOS in the monomer feed the thermal stability as well as the ceramic residue of the oligomers increase and a reverse trend is observed for variation of BA concentration. Pyrolysis of the oligomers produce C2, C3 hydrocarbons and benzene as the main pyrolysis products. Ceramic conversion of a typical oligomer was carried out at 900 °C, 1500 °C and 1650 °C in argon atmosphere. The ceramics obtained at 900 °C and 1500 °C are amorphous SiBOC which transform to β-SiC at 1650 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.E. Mark, H.R. Allcock, R. West, Inorganic Polymers, 2nd edn. (Oxford University Press, New York, 2005).

    Book  Google Scholar 

  2. A.H. McKinney, Inorganic-Organic Hybrid Polymers for High-Temperature Applications, Technical Briefs, vol. 42, issue 1 (Naval Research Laboratory, Washington DC, 2018)

  3. K.J.D. MacKenzie, Innovative Applications of Inorganic Polymers (Geopolymers), Chapter 28 in Handbook of Alkali-Activated Cements, Mortars and Concretes (Elsevier, Amsterdam, 2015), pp. 777–805

    Google Scholar 

  4. K.A. Williams, A.J. Boydston, C.W. Bielawski, Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 36, 729–744 (2007)

    Article  CAS  Google Scholar 

  5. P. Colombo, G. Mera, R. Riedel, G.D. Soraru, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010)

    CAS  Google Scholar 

  6. S. Packirisamy, Decaborane(14)-based polymers. Prog. Polym. Sci. 21, 707–773 (1996)

    Article  CAS  Google Scholar 

  7. S. Packirisamy, D. Schwam, M.H. Litt, Atomic oxygen resistant coatings for low earth orbit space structures. J. Mater. Sci. 30, 308–320 (1995)

    Article  CAS  Google Scholar 

  8. D. Devapal, S. Packirisamy, R.M. Korulla, K.N. Ninan, Atomic oxygen resistant coating from poly (tetramethyldisilylene-co-styrene). J. Appl. Polym. Sci. 94(6), 2368–2375 (2004)

    Article  CAS  Google Scholar 

  9. D. Devapal, S. Packirisamy, C.P.R. Nair, K.N. Ninan, Phosphazene-based polymers as atomic oxygen resistant materials. J. Mater. Sci. 41, 5764–5766 (2006)

    Article  CAS  Google Scholar 

  10. P. Innocenzi, B. Lebeau, Organic–inorganic hybrid materials for non-linear optics. J. Mater. Chem. 15, 3821–3831 (2005)

    Article  CAS  Google Scholar 

  11. S. Packirisamy, K.J. Sreejith D. Devapal, B. Swaminathan, Polymer-derived ceramics and their space applications, in Handbook of Advanced Ceramics and Composites. ed. by Y. Mahajan, J. Roy (Springer Nature, Cham, 2000), pp. 975–1080

    Google Scholar 

  12. S. Fu, M. Zhu, Y. Zhu, Organosilicon polymer-derived ceramics: an overview. J. Adv. Ceram. 8, 457–478 (2019)

    Article  CAS  Google Scholar 

  13. A. Xia, J. Yin, X. Chen, X. Liu, Z. Huang, Polymer-derived si-based ceramics: recent developments and perspectives. Crystals 10(9), 824 (2020)

    Article  CAS  Google Scholar 

  14. A. Viard, D. Fonblanc, D. Lopez-Ferber, M. Schmidt, A. Lale, C. Durif, S. Bernard, Polymer derived Si-B-C-N ceramics: 30 years of research. Adv. Eng. Mater. 20, 1800360 (2018)

    Article  Google Scholar 

  15. E. Ionescu, S. Bernard, R. Lucas, P. Kroll, S. Ushakov, A. Navrotsky, R. Riedel, Polymer-derived Ultra-High Temperature Ceramics (UHTCs) and related materials. Adv. Eng. Mater. 21, 1900269 (2019)

    Article  Google Scholar 

  16. G.D. Soraru, E. Dallapiccola, G. Dandrea, Mechanical characterization of sol–gel-derived silicon oxycarbide glasses. J. Am. Ceram. Soc. 79, 2074–2080 (1996)

    Article  CAS  Google Scholar 

  17. J. Parmentier, G.D. Soraru, F. Banonneau, Influence of the microstructure on the high temperature behavior of gel-derived SiOC glasses. J. Eur. Ceram. Soc. 21, 101–108 (2001)

    Article  Google Scholar 

  18. G.D. Soraru, L. Pederiva, J. Latournerie, R. Raj, Pyrolysis kinetics for the conversion of a polymer into an amorphous silicon oxycarbide ceramic. J. Am. Ceram. Soc. 85, 2181–2187 (2002)

    Article  CAS  Google Scholar 

  19. A. Saha, R. Raj, Crystallization maps for SiCO amorphous ceramics. J. Am. Ceram. Soc. 90, 578–583 (2007)

    Article  CAS  Google Scholar 

  20. C. Stabler, E. Ionescu, M. Graczyk-Zajac, I. Gonzalo-Juan, R. Riedel, Silicon oxycarbide glasses and glass ceramics: “all-rounder” materials for advanced structural and functional applications. J. Am. Ceram. Soc. 101, 4817–4856 (2018)

    Article  CAS  Google Scholar 

  21. B.V. Manoj Kumar, Y.-W. Kim, Processing of polysiloxane-derived porous ceramics: a review. Sci. Technol. Adv. Mater. 11, 044303 (2010)

    Article  CAS  Google Scholar 

  22. K. Lu, D. Erb, Polymer derived silicon oxycarbide-based coatings. Int. Mater. Rev. 63, 139–161 (2017)

    Article  Google Scholar 

  23. G.D. Soraru, F. Babonneau, S. Maurina, J. Vicens, Sol–gel synthesis of SiBOC glasses. J. Non-Cryst. Solids 224, 173–183 (1998)

    Article  Google Scholar 

  24. G.D. Soraru, N. Dallabona, C. Gervais, F. Babonneau, Organically modified SiO2-B2O3 gels displaying a high content of borosiloxane (B-O-Si) bonds. Chem. Mater. 11, 910–919 (1999)

    Article  CAS  Google Scholar 

  25. G. Ambadas, S. Packirisamy, K.N. Ninan, Synthesis, characterization and thermal properties of boron and silicon containing preceramic oligomers. J. Mater. Sci. Lett. 21, 1003–1005 (2002)

    Article  CAS  Google Scholar 

  26. C. Gervais, F. Babonneau, N. Dallabonna, G.D. Sorarù, Sol–gel-derived silicon-boron oxycarbide glasses containing mixed silicon oxycarbide (SiCxO4−x) and boron oxycarbide (BCyO3−y) units. J. Am. Ceram. Soc. 84, 2160–2164 (2004)

    Article  Google Scholar 

  27. M.A. Schiavon, C. Gervais, F. Babonneau, G.D. Soraru, Crystallization behavior of novel silicon boron oxycarbide glasses. J. Am. Ceram. Soc. 87, 203–208 (2004)

    Article  CAS  Google Scholar 

  28. M.A. Schiavon, N.A. Armelin, I. Yoshida, Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Mater. Chem. Phys. 112, 1047–1054 (2008)

    Article  CAS  Google Scholar 

  29. D. Devapal, S. Packirisamy, K.J. Sreejith, P.V. Ravindran, B.K. George, Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes. J. Inorg. Organomet. Polym. Mater. 20, 666–674 (2010)

    Article  CAS  Google Scholar 

  30. K.J. Sreejith, P.V. Prabhakaran, K.P. Laly, R. Dimple, S. Packirisamy, Vinyl-functionalized poly(borosiloxane) as precursor for SiC/SiBOC nanocomposite. Ceram. Int. 42, 15285–15293 (2016)

    Article  CAS  Google Scholar 

  31. D. Devapal, K.J. Sreejith, B. Swaminathan, S. Chinthalapalli, S. Bhuvaneswari, S. Packirisamy, Influence of heat treatment temperature on the microstructure evolution of poly(vinylborosiloxane) derived ceramics. J. Inorg. Organomet. Polym. Mater. 30, 2224–2233 (2020)

    Article  CAS  Google Scholar 

  32. S. Rubinsztajn, New facile process for synthesis of borosiloxane resins. J. Inorg. Organomet. Polym. Mater. 24, 1092–1095 (2014)

    Article  CAS  Google Scholar 

  33. D. Devapal, Studies on inorganic and organometallic polymers. PhD thesis, Mahatma Gandhi University, Kottayam (2007)

  34. P.V. Prabhakaran, Studies on non-oxide ceramics derived from polymers and their applications. PhD thesis, University of Kerala, Thiruvananthapuram, 2008

  35. K. J. Sreejith, Polymer derived ceramics and their high temperature applications. PhD thesis, University of Kerala, Thiruvananthapuram, 2010

  36. J.A. Perry, Introduction to Analytical Gas Chromatography: History, Principles and Practice (Marcel Dekker, New York, 1981).

    Google Scholar 

  37. G.D. Soraru, F. Babonneau, C. Gervais, N. Dallabona, Hybrid RSiO1.5/B2O3 gels from modified silicon alkoxides and boric acid. J. Sol–Gel. Sci. Technol. 18, 11–19 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the authorities of VSSC for granting permission to publish this work. Help received from the members of the Analytical and Spectroscopy Division for the thermal, chemical and spectral analysis of the samples is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepa Devapal or S. Packirisamy.

Ethics declarations

Conflict of interest

There is no conflict of interest with respect to the data presented in the paper. There is also transparency of the data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devapal, D., Varughese, G., Radhakrishnan, T.S. et al. Studies on Borosiloxane Oligomers from Mixtures of Vinyltriethoxysilane and Phenyltrialkoxysilanes. J Inorg Organomet Polym 31, 2672–2681 (2021). https://doi.org/10.1007/s10904-021-01964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01964-9

Keywords

Navigation