Skip to main content
Log in

Effect of ZnO/Ag Nanocomposites Against Anionic and Cationic Dyes as Photocatalysts and Antibacterial Agents

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Engineering efficient, strong and cost-effective nanoparticles with strong inhibitory activities are the growing need at present. Using the strategies of doping, Zinc oxide/Silver nanocomposites (ZnO/Ag NCs) namely 0.9 M ZnO: 0.1 M Ag, 0.7 M ZnO: 0.3 M Ag and 0.5 M ZnO: 0.5 M Ag were synthesized hydrothermally. The average crystallite sizes for the ZnO/Ag NCs were 31 nm, 29 nm and 23 nm. The band gap energy (Eg) for the ZnO/Ag NCs was estimated to be 3.09 eV, 3.12 eV and 3.18 eV using Tauc’s plot. Grain-like morphological images was observed in the Scanning Electron Microscopy (SEM), which helps in effective promotion of degrading methyl orange (MO), methylene blue (MB) and crystal violet (CV) under visible light irradiation with a rate constant of 5 × 10–3/min, 16.6 × 10–3/min and 4 × 10–3/min respectively. This superior photocatalytic decomposition of dye are ascribed to smaller particle size, high surface area, the ability to absorb visible light and the efficient charge separation associated with the synergetic effects of appropriate amounts of ZnO and Ag in the prepared samples. In addition, the antibacterial efficacy of the NCs is observed as 90 and 100% for 75 μl. These hydrothermally synthesized synergistic NCs can be designed for large-scale fabrication of NC materials for potential applications in photocatalytic and antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Singh, P.B. Barman, D. Sharma, J. Mater. Sci: Mater. Electron. 28(8), 5705–5717 (2017). https://doi.org/10.1007/s10854-016-6242-2

    Article  CAS  Google Scholar 

  2. O.J. Hao, H. Kim, P.C. Chiang, Crit. Rev. Environ. Sci. Technol. 30, 449–505 (2000). https://doi.org/10.1080/10643380091184237

    Article  CAS  Google Scholar 

  3. S.S. Turkyılmaz, N. Guy, M. Ozacar, Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobiol. A: Chem. (2017). https://doi.org/10.1016/j.jphotochem.2017.03.027

    Article  Google Scholar 

  4. P. Basnet, S. Chatterjee, Nano-Struct. Nano-Objects 22, 100426 (2020). https://doi.org/10.1016/j.nanoso.2020.100426

    Article  CAS  Google Scholar 

  5. X. Hu, G. Li, J.C. Yu, Langmuir 26, 3031–3039 (2010). https://doi.org/10.1021/la902142b

    Article  CAS  PubMed  Google Scholar 

  6. J.J. Wu, C.H. Tseng, Appl. Catal. B 66(1–2), 51–57 (2006). https://doi.org/10.1016/j.apcatb.2006.02.013

    Article  CAS  Google Scholar 

  7. Y. Yan, M.M. Al-Jassim, S.-H. Wei, Appl. Phys. Lett. 89(18), 181912-1–181912-3 (2006). https://doi.org/10.1063/1.2378404

    Article  CAS  Google Scholar 

  8. O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, J. Phys. Chem. C 114(29), 12401–12408 (2010). https://doi.org/10.1021/jp910263n

    Article  CAS  Google Scholar 

  9. K. Kaviyarasu, C. Maria Magdalane, D. Jayakumar et al., High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J. King Saud Univ. Sci. 32(2), 1516–1522 (2020). https://doi.org/10.1016/j.jksus.2019.12.006

    Article  Google Scholar 

  10. C. Maria Magdalanea, K. Kaviyarasuc, N. Matinisec, N. Mayedwac, N. Mongwaketsic, D. Letsholathebe, G.T. Mola, N.A. Dhabi, M.V. Arasu, M. Heninic, J. Kennedy, M. Maaza, B. Jayaraj, S. Afr J. Ind. Eng. 26, 49–60 (2018). https://doi.org/10.1016/j.sajce.2018.09.003

    Article  Google Scholar 

  11. C. Maria Magdalane, K. Kaviyarasu, G.M.A. priyadharsini, A.K.H. Bashir, N. Mayedwa, A.B. Isaeve, N.A. Al-Dhabi, M.V. Arasu, S. Arokiayaraj, J. Kennedy, M. Maaza, J. Mater. Res. Technol. 8(3), 2898–2909 (2019). https://doi.org/10.1016/j.jmrt.2018.11.019

    Article  CAS  Google Scholar 

  12. S. Panimalar, R. Uthrakumar, E. Tamil Selvi, P. Gomathy, C. Inmozhi, K. Kaviyarasu, J. Kennedy, Surf. Interfaces 20, 100512 (2020). https://doi.org/10.1016/j.surfin.2020.100512

    Article  Google Scholar 

  13. C. Karunakaran, V. Rajeswari, P. Gomathisankar, J. Alloys Compd. 508(2), 587–591 (2010). https://doi.org/10.1016/j.jallcom.2010.08.128

    Article  CAS  Google Scholar 

  14. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Catal. Sci. Technol. 2(11), 2319–2326 (2012). https://doi.org/10.1039/c2cy20254a

    Article  CAS  Google Scholar 

  15. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Powder Technol. 219, 158–164 (2012). https://doi.org/10.1016/j.powtec.2011.12.032

    Article  CAS  Google Scholar 

  16. O. Bechambi, M. Chalbi, W. Najjar, S. Sayadi, Appl. Surf. Sci. 347, 414–420 (2015). https://doi.org/10.1016/j.apsusc.2015.03.049

    Article  CAS  Google Scholar 

  17. Y. Liang, Na Guo, L. Li, R. Li, G. Ji, S. Gan, New J. Chem. 40(2), 1587–1594 (2016). https://doi.org/10.1039/C5NJ02388B

    Article  CAS  Google Scholar 

  18. M.A. Dar, Y.S. Kim, W.B. Kim, J.M. Sohn, H.S. Shin, Appl. Surf. Sci. 254, 7477–7481 (2008). https://doi.org/10.1016/j.apsusc.2008.06.004

    Article  CAS  Google Scholar 

  19. I. Ahmada, E. Ahmed, M. Ullah, A.M. Rana, M.F. Manzoor, M.A. Rasheed, A.S. Malik, N.R. Khad, M. Ahmad, U. Mehta, J. Ovonic Res. 14(6), 415–427 (2018)

    Google Scholar 

  20. K.S. Ahmad, S.B. Jaffri, Open Chem. 16, 556–570 (2018). https://doi.org/10.1515/chem-2018-0060

    Article  CAS  Google Scholar 

  21. S.K. Gandomania, R. Yousefi, F.J. Sheini, N.M. Huang, Ceram. Int. 40(6), 7957–7963 (2014). https://doi.org/10.1016/j.ceramint.2013.12.145

    Article  CAS  Google Scholar 

  22. X. Wang, L. Sø, R. Su, S. Wendt, P. Hald, A. Mamakhel, C. Yang, Y. Huang, B.B. Iversen, F. Besenbacher, J. Catal. 310, 100–108 (2014). https://doi.org/10.1016/j.jcat.2013.04.022

    Article  CAS  Google Scholar 

  23. A. Gouthaman, J.A. Asir, A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, M.A.R. Ahamed, R.S. Azarudeen, J. Hazard. Mater. 373, 493–503 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.105

    Article  CAS  Google Scholar 

  24. M. Jothibas, A. Muthuvel, K. Senthilkannan, V. Mohana, AIP Conf. Proc. 2162, 020151 (2019). https://doi.org/10.1063/1.5130361

    Article  CAS  Google Scholar 

  25. K. Gayathri, P. Rrishnan, P.R. Rajkumar, G. Anbalagan, Bull. Mater. Sci. 37(5), 1589–1595 (2014). https://doi.org/10.1007/s12034-014-0721-y

    Article  CAS  Google Scholar 

  26. C. Abinaya, M. Marikkannan, M. Manikandan, J. Mayandi, P. Suresh, V. Shanmugaiah, C. Ekstrum, J.M. Pearce, Mat. Chem. Phy. 184, 172–182 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.039

    Article  CAS  Google Scholar 

  27. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.01.160

    Article  Google Scholar 

  28. M.S. Geetha, H. Nagabhushana, H.N. Shivananjaiah, Green mediated synthesis and characterization of ZnO nano particles using Euphorbia Jatropa latex as reducing agent. J. Sci.: Adv. Mater. Device. (2016). https://doi.org/10.1016/j.jsamd.2016.06.015

    Article  Google Scholar 

  29. F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yung, Chem. Phys. Lett. 372(3–4), 451–454 (2003). https://doi.org/10.1016/S0009-2614(03)00440-8

    Article  CAS  Google Scholar 

  30. R.G. Liu, H. Yu, Y. Huang, Cellulose 12(1), 25–34 (2005). https://doi.org/10.1007/s10570-004-0955-8

    Article  Google Scholar 

  31. K. Ravichandrika, P. Kiranmayi, R.V.S.S.N. Ravikumar, Int. J. Pharm. Pharm. Sci. 10(1), 32–35 (2012). https://doi.org/10.22159/ijpps.2018v10i1.20636

    Article  CAS  Google Scholar 

  32. R.F. Silva, M.E.D. Zaniquelli, Colliod Surf. Physicochem. Eng. Aspect 198–200, 551–558 (2002). https://doi.org/10.1016/s0927-7757(01)00959-1

    Article  Google Scholar 

  33. K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 120, 19–24 (2014). https://doi.org/10.1016/j.saa.2013.09.103

    Article  CAS  Google Scholar 

  34. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946–1953 (2012). https://doi.org/10.1016/j.optmat.2012.06.004

    Article  CAS  Google Scholar 

  35. S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, J. Alloys Compd. 640, 408–415 (2015). https://doi.org/10.1016/j.jallcom.2015.03.136

    Article  CAS  Google Scholar 

  36. Y. Dong, C. Feng, P.P. Jiang, G. Wang, K. Li, H. Miao, RSC Adv 4, 7340–7346 (2014). https://doi.org/10.1039/C3RA46655H

    Article  CAS  Google Scholar 

  37. C.G. Tian, W. Li, K. Pan, Q. Zhang, J. Solid. State. Chem. 183(11), 2720–2725 (2010). https://doi.org/10.1016/j.jssc.2010.09.020

    Article  CAS  Google Scholar 

  38. V. Poornima Parvathi, M. Umadevi, R. Bhaviya Raj, J. Environ. Manage. 162, 299–305 (2015). https://doi.org/10.1016/j.jenvman.2015.07.055

    Article  CAS  PubMed  Google Scholar 

  39. D. Shuwang, Z. Yangyanghi, L. Hao, W. Tingzhi, W. Kai, L. Zaiquan, Mater. Charact. 114, 185–196 (2016). https://doi.org/10.1016/j.matchar.2016.02.021

    Article  CAS  Google Scholar 

  40. O. Bechambi, M. Chalbi, W. Najjar, S. Sayadi, Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl. Surf. Sci. (2015). https://doi.org/10.1016/j.apsusc.2015.03.049

    Article  Google Scholar 

  41. S. Kumar, V. Singh, A. Tanwar, J. Mater. Sci: Mater. Electron. 27(2), 2166–2173 (2016). https://doi.org/10.1007/s10854-015-4227-1

    Article  CAS  Google Scholar 

  42. K.S. Siddiqi, A. Husen, R.A.K. Rao, J. Nanobiotechnol. 16, 1–14 (2018). https://doi.org/10.1186/s12951-018-0334-5

    Article  CAS  Google Scholar 

  43. W. Vallejo, A. Cantillo, C. DíazUribe, Int. J. Photoenergy. (2020). https://doi.org/10.1155/2020/1627498

    Article  Google Scholar 

  44. T. Chen, Y. Zheng, J.-M. Lin, G. Chen, J. Am. Soc. Mass Spectro. 19(7), 997–1003 (2008). https://doi.org/10.1016/j.jasms.2008.03.008

    Article  CAS  Google Scholar 

  45. R. Kumar, D. Rana, A. Umar, P. Sharma, S. Chauhan, M.S. Chauhan, Talanta 137(15), 204–213 (2015). https://doi.org/10.1016/j.talanta.2015.01.039

    Article  CAS  PubMed  Google Scholar 

  46. S. Kuriakose, V. Choudhary Pal, B. Satpati, S. Mohapatra, Phys. Chem. Chem. Phys. 16(33), 17560–17568 (2014). https://doi.org/10.1039/c4cp02228a

    Article  CAS  PubMed  Google Scholar 

  47. J. Bandara, C.C. Haghdar, W.G. Jayasekera, Appl. Catal. B Environ. 50(2), 83–88 (2004). https://doi.org/10.1016/j.apcatb.2003.12.021

    Article  CAS  Google Scholar 

  48. P. Venkateswara Reddy, S. Venkatramana Reddy, B. Sankara Reddy, Mater. Today Proc. 3(6), 1752–1761 (2016). https://doi.org/10.1016/j.matpr.2016.04.070

    Article  Google Scholar 

  49. R. Chauhan, A. Kumar, Ram Pal Chaudhary. J. Sol-Gel. Sci. Technol. 63, 546–553 (2012). https://doi.org/10.1007/s10971-012-2818-3

    Article  CAS  Google Scholar 

  50. Y.M. Qin, C.J. Zhu, J. Chen, Y.Z. Chen, C. Zhang, J. Appl. Polym. Sci. 101(1), 766–771 (2006). https://doi.org/10.1002/app.23985

    Article  CAS  Google Scholar 

  51. D. Chandran, L.S. Nair, S. Balachandran, K. Rajendra Babu, M. Deepa, J. Sol-Gel Sci. Technol. 76(3), 582–591 (2015). https://doi.org/10.1007/s10971-015-3808-z

    Article  CAS  Google Scholar 

  52. C. Abinaya, J. Mayandi, J. Osborne, M. Frost, C. Ekstrum, Mater. Res. Express IOP 4(7), 075401 (2017). https://doi.org/10.1088/2053-1591/aa796d

    Article  CAS  Google Scholar 

  53. A. Pal, S.O. Pehkonen, L.E. Yu, M.B. Ray, J. Photochem. Photobiol. A Chem. 186(2–3), 335–341 (2007). https://doi.org/10.1016/j.jphotochem.2006.09.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grants Commission-Rajiv Gandhi National Fellowship [F1-17.1/2016-17/RGNF-2015-17-SC-TAM-23657], New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahalingam Umadevi.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, R.B., Umadevi, M. & Parimaladevi, R. Effect of ZnO/Ag Nanocomposites Against Anionic and Cationic Dyes as Photocatalysts and Antibacterial Agents. J Inorg Organomet Polym 31, 500–510 (2021). https://doi.org/10.1007/s10904-020-01717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01717-0

Keywords

Navigation