Skip to main content
Log in

Effect of Calcination Temperature on the Behavior of the Agglomerated \(\text{Co}_{3}\text{O}_{4}\) Nanoparticles Obtained Through the Sol–Gel Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Agglomerates of \(\text{Co}_{3}\text{O}_{4}\) were obtained using the sol–gel method for the synthesis with subsequent calcination of the samples up to 550 °C. Through X-rays it was observed that the samples presented the pure spinel phase with a crystallite size between 33.73 and 41.45 nm. In the thermogravimetric measurement from 262 °C high structural stability is presented with phase change at 917 °C. As the temperature increases, the particles increase in size, observing agglomerated nanometer particles that increase with temperature (3.5–3.8 μm). The 683 cm\(^{-1}\) Raman mode for 550 °C clearly presents an shifted compared to the other samples. The band gap for the samples under study varied with the temperature change of 1.77–1.81 eV. The FWHM decreases at a higher temperature, this confirms the larger crystallite size and the higher degree of sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Yang, F. Wu, L. Wang, X. Chen, J. Xie, Nanostructuring \(\text{Co}_{3}\text{O}_{4}\) to tune capacitive behaviors: from low to high dimensions. Chem. Select. 5, 3638–3643 (2020)

    CAS  Google Scholar 

  2. L. Cardenas, A. Raba, R.M. Joya, Synthesis and evaluation of nickel doped \(\text{Co}_{3}\text{O}_{4}\) produced through hydrothermal technique. Dynamics 87, 184–191 (2020)

    Google Scholar 

  3. H. Sahan, H. Goktepe, S. Yildiz, C. Caymaz, S. Patat, A novel and green synthesis of mixed phase CoO@Co3O4@C anode material for lithium ion batteries. Ionics 25, 447–455 (2019)

    CAS  Google Scholar 

  4. R.M. Kakhki, M. Bina, Dispersive micro-solid phase extraction based on \(\text{Co}_{3}\text{O}_{4}\) modified nanoclinoptilolite for fast determination of malachite green in the environmental water samples. J. Inorg. Organomet. Polym. 30, 2475–2479 (2020)

    Google Scholar 

  5. M. Li, C. Han, Y. Zhang, X. Bo, L. Guo, Facile synthesis of ultrafine \(\text{Co}_{3}\text{O}_{4}\) nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors. Anal. Chim. Acta 861, 25–35 (2015)

    CAS  PubMed  Google Scholar 

  6. J. Cao, S. Wang, X. Zhao, Y. Xing, J. Li, D. Li, Facile synthesis and enhanced toluene gas sensing performances of \(\text{Co}_{3}\text{O}_{4}\) hollow nanosheets. Mater. Lett. 263, 127215 (2020)

    CAS  Google Scholar 

  7. R. Kumar, Ni\(\text{Co}_{3}\text{O}_{4}\) nano-/microstructures as high-performance biosensors: a review. Nano-Micro Lett. 12–122, 1–52 (2020)

    Google Scholar 

  8. M.M. Abdullah, M.S. Akhtar, S.M. Al-Abbas, Facile growth and promising applications of cobalt oxide (\(\text{Co}_{3}\text{O}_{4}\)) nanoparticles as chemi-sensor and dielectric material. Curr. Nanosci. 14, 343–351 (2018)

    CAS  Google Scholar 

  9. K. Choi, H. Kim, K.M. Kim, D.W. Liu, G.Z. Cao, J.H. Le, \(\text{C}_{2}\text{H}_{5}\text{OH }\) sensing characteristics of various \(\text{Co}_{3}\text{O}_{4}\) nanostructures prepared by solve thermal reaction. Sensors Actuators B 146, 183–189 (2010)

    CAS  Google Scholar 

  10. B. Zhang, X. Zhou, C. Jiang, F. Qu, M. Yang, Facile synthesis of mesoporous \(\text{Co}_{3}\text{O}_{4}\) nanofans as gas sensing materials for selective detection of xylene vapor. Mater. Lett. 128, 127–130 (2018)

    Google Scholar 

  11. C. Yan, Y. Zhu, Y. Li, Z. Fang, L. Peng, X. Zhou, G. Yu, Built-in electric field enabled in carbon-doped \(\text{Co}_{3}\text{O}_{4}\) nanocrystals for superior lithium-ion storage. Adv. Funct. Mater. 28, 1705951 (2018)

    Google Scholar 

  12. S.L. Zhang, B.Y. Guan, X.F. Lu, S. Xi, Y. Du, X.W.D. Lou, Metal atom-doped \(\text{Co}_{3}\text{O}_{4}\) hierarchical nanoplates for electrocatalytic oxygen evolution***. Adv. Mater. 1000, 10000 (2020). https://doi.org/10.1002/adma.20200223

    Article  Google Scholar 

  13. X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, W. Du, Phase and morphology evolution of high dielectric CoO/\(\text{Co}_{3}\text{O}_{4}\) particles with \(\text{Co}_{3}\text{O}_{4}\) nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020)

    CAS  Google Scholar 

  14. T. He, D. Chen, X. Jiao, Controlled synthesis of \(\text{Co}_{3}\text{O}_{4}\) nanoparticles through oriented aggregation. Chem. Mater. 16, 737–743 (2004)

    CAS  Google Scholar 

  15. B. Raghavendra, T. Sankarappa, A. Malge, Structural, optical absorption and conductivity of PIn/\(\text{Co}_{3}\text{O}_{4}\) composites******. J. Inorg. Organomet. Polym. 10000, 10000 (2020). https://doi.org/10.1007/s10904-020-01589-4

    Article  CAS  Google Scholar 

  16. A. Lakehal, B. Bedhiaf, A. Bouaza, H. Benhebal, A. Ammari, C. Dalache, Structural, optical and electrical properties of Ni-doped \(\text{Co}_{3}\text{O}_{4}\) prepared via sol–gel technique. Mater. Res. 21, 1–8 (2018)

    Google Scholar 

  17. L. Qiao, H.Y. Xiao, H.M. Meyer, J.N. Sun, C.M. Rouleau, A.A. Puretzky, M.D. Biegalski, Nature of the band gap and origin of the electro-/photo-activity of \(\text{Co}_{3}\text{O}_{4}\). J. Mater. Chem. C. 1, 4628 (2013)

    CAS  Google Scholar 

  18. W. Shi, F. Guo, C. Zhu, H. Wang, H. Li, H. Huang, Y. Liu, Z. Kang, Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting. J. Mater. Chem. A 5, 19800 (2017)

    CAS  Google Scholar 

  19. L. Chao, C. Taiqiang, X. Weijing, L. Xiaobing, P. Likun, C. Qun, H. Bingwen, Mesoporous nanostructured \(\text{Co}_{3}\text{O}_{4}\) derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3, 5585–5591 (2015)

    Google Scholar 

  20. S. Jinxiao, Z. Hu, Z. Meizhou, F. Jianhui, Y. Aihua, Facile synthesis of metal-organic framework-derived \(\text{Co}_{3}\text{O}_{4}\) with different morphologies coated graphene foam as integrated anodes for lithium-ion. J. Alloys Compd. 768, 1049–1057 (2018)

    Google Scholar 

  21. B. Liu, X. Zhang, H. Shioyama, T. Mukai, T. Sakai, Q. Xu, Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated \(\text{Co}_{3}\text{O}_{4}\) nanoparticles as an electrode material for lithium ion battery. J. Power Sources 195, 857861 (2010)

    Google Scholar 

  22. R. Gao, Z. Yang, L. Zheng, L. Gu, L. Liu, Y. Lee, Z. Hu, X. Liu, Enhancing the catalytic activity of \(\text{Co}_{3}\text{O}_{4}\) for LiO\(_2\) batteries through the synergy of surface/interface/doping engineering. ACS Catal. 8, 1955 (2018)

    CAS  Google Scholar 

  23. Y. Li, W. Qiu, F. Qin, H. Fang, V.G. Hadjiev, D. Litvinov, J. Bao, Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy. J. Phys. Chem. C. 120, 4511–4516 (2016)

    CAS  Google Scholar 

  24. A. Raba, J. BarbaOrtega, M. Joya, Effects of metal doping agent on the properties of \(\text{Nb}_{2-x}\)\(\text{M}_{x}\)\(\text{O}_{5}\) (M = Mn, Fe, and Ni) system. Int. J. Appl. Ceram. Technol. 15, 1577–1583 (2018)

    CAS  Google Scholar 

  25. J. Jiang, L. Li, Synthesis of sphere-like \(\text{Co}_{3}\text{O}_{4}\) nanocrystals via a simple polyol route. Mater. Lett. 61, 4894–4896 (2007)

    CAS  Google Scholar 

  26. R. Tummala, R.K. Guduru, P.S. Mohanty, Nanostructured \(\text{Co}_{3}\text{O}_{4}\) electrodes for supercapacitor applications from plasma spray technique. J. Power Sources 209, 44–51 (2012)

    CAS  Google Scholar 

  27. R. Tummala, R.K. Guduru, P.S. Mohanty, Binder free, porous and nanostructured \(\text{Co}_{3}\text{O}_{4}\) anode for Li-ion batteries from solution precursor plasma deposition. J. Power Sources 199, 270–277 (2012)

    CAS  Google Scholar 

  28. Y. Mussa, F. Ahmed, M. Arsalan, E. Alsharaeh, Two dimensional (2D) reduced graphene oxide (RGO)/hexagonal boron nitride (h-BN) based nanocomposites as anodes for high temperature rechargeable lithium-ion batteries. Sci. Rep. 10, 1882 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. R. Itteboina, T.K. Sau, Sol–gel synthesis and characterizations of morphology-controlled \(\text{Co}_{3}\text{O}_{4}\) particles. Mater. Today. Proc. 9, 458467 (2019)

    Google Scholar 

  30. B. Tomić-Tucaković, D. Majstorovic, D. Jelic, S. Mentus, Thermogravimetric study of the kinetics of \(\text{Co}_{3}\text{O}_{4}\) reduction by hydrogen. Thermochim. Acta. 541, 15–24 (2012)

    Google Scholar 

  31. X. Deng, Z. Huang, W. Wang, R.N. Dav, Investigation of nanoparticle agglomerates properties using Monte Carlo simulations. Adv. Powder Technol. 27, 19711979 (2016)

    Google Scholar 

  32. A.M. Tonelli, J. Venturini, S. Arcaro, J.G. Henn, D.J. Moura, A.D.C. Viegas, C.P. Bergmann, Novel coreshell nanocomposites based on \(\text{TiO}_{2}\) covered magnetic \(\text{Co}_{3}\text{O}_{4}\) for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 108, 1879–1887 (2020)

    CAS  Google Scholar 

  33. A. Takafumi, I. Toshio, M. Yoshitake, S. Woosuck, M. Ichiro, K. Masahito, Gas sensor properties of nanopore-bearing \(\text{Co}_{3}\text{O}_{4}\) particles containing Pt or Pd particles. J. Asian Ceram. Soc. 8(1), 138–148 (2020)

    Google Scholar 

  34. D. Trpkov, M. Panjan, L. Kopanja, M. Tadi, Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical \(\alpha -\text{Fe}_{2}\text{O}_{3}\) (hematite) mushroom-, cube-and sphere-like superstructures. Appl. Surf. Sci. 457, 427–438 (2018)

    CAS  Google Scholar 

  35. I. Lorite, J.J. Romero, J.F. Fernndez, Effects of the agglomeration state on the Raman properties of \(\text{Co}_{3}\text{O}_{4}\) nanoparticles. J. Raman Spectrosc. 43, 14431448 (2012)

    Google Scholar 

  36. A. Diallo, A.C. Beye, T.B. Doyle, E. Park, M. Maaza, Green synthesis of \(\text{Co}_{3}\text{O}_{4}\) nanoparticles via Aspalathus linearis: physical properties. Green Chem. Lett. Rev. 8, 30–36 (2015)

    CAS  Google Scholar 

  37. G. George, S. Anandhan, A comparative study on the physicochemical properties of sol–gel electrospun cobalt oxide nanofibres from two different polymeric binders. RSC Adv. 5, 81429–81437 (2015)

    CAS  Google Scholar 

  38. V. Singh, M. Kosa, K. Majhi, D.T. Major, Putting DFT to the test: a first-principles study of electronic, magnetic, and optical properties of \(\text{Co}_{3}\text{O}_{4}\). J. Chem. Theory Comput. 11, 64–72 (2014)

    Google Scholar 

  39. R. Drasovean, S. Condurache-Bota, Structural characterization and optical properties of \(\text{Co}_{3}\text{O}_{4}\) and CoO films. J. Optoelectron. Adv. Mater. 11, 2141 (2009)

    CAS  Google Scholar 

  40. C.M. Jiang, L.R. Baker, J.M. Lucas, J. Vura-Weis, A.P. Alivisatos, S.R. Leone, Characterization of photo-induced charge transfer and hot carrier relaxation pathways in spinel cobalt oxide (\(\text{Co}_{3}\text{O}_{4}\)). J. Phys. Chem. C. 118, 22774–22784 (2014)

    CAS  Google Scholar 

  41. A.K. Sarfraz, S.K. Hasanain, Size dependence of magnetic and optical properties of \(\text{Co}_{3}\text{O}_{4}\) nanoparticles. Act. Phys. Pol. A. 125, 139–144 (2014)

    Google Scholar 

  42. J. Pal, P. Chauhan, Study of physical properties of cobalt oxide (\(\text{Co}_{3}\text{O}_{4}\)) nanocrystals. Mater. Charact. 61, 575–579 (2010)

    CAS  Google Scholar 

  43. H. Zhang, W. Tian, L. Zhou, H. Sun, M. Tade, S. Wang, Monodisperse \(\text{Co}_{3}\text{O}_{4}\) quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. Appl. Catal. B Environ. 223, 2–9 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Universidad Nacional de Colombia in Bogotá. Edwin Murillo professor at Universidad Francisco de Paula Santander in Cúcuta, Colombia, for the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Joya.

Ethics declarations

Conflict of interest

The authors certify that they have not signed an agreement with any sponsor of the research reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardenas-Flechas, L.J., Raba, A.M., Barba-Ortega, J. et al. Effect of Calcination Temperature on the Behavior of the Agglomerated \(\text{Co}_{3}\text{O}_{4}\) Nanoparticles Obtained Through the Sol–Gel Method. J Inorg Organomet Polym 31, 121–128 (2021). https://doi.org/10.1007/s10904-020-01685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01685-5

Keywords

Navigation