Skip to main content
Log in

Reactivity of the (trans-Pt(PMe3)2(C≡CC6H4SMe)2) Ligand with Copper Cyanide: Formation of the [Cu22-C≡CC6H4SMe)2]n Polymer

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The organometallic ligand trans-Pt(PMe3)2(C≡CC6H4SMe)2, L1, reacts with C≡N ions (as sodium salt) in various stoichiometric ratios to form L3, [trans-Pt(PMe3)2(C≡N)2], and MeSC6H4C≡C anions, which were identified using various spectroscopic techniques (1H and 31P NMR, and ESI-TOF). Concurrently, the capture of the released MeSC6H4C≡C units by Cu(I) metals was observed when L1 was reacted with CuCN in excess. In this case, two new coordination polymers (CPs), [Cu(μ2-C≡CC6H4SMe)]n (CP1) and [CuCN(L2)]n (CP2) where L2 is the new ligand [trans-Pt(PMe3)2(C≡CC6H4SMe)(C≡N)] formed along with the [trans-Pt(PMe3)2(C≡N)2] complex in small amount. CP1 was also synthesized independently to secure its identification. CP1 was found to be emissive at both 298 and 77 K. The nature of its emissive excited state was found to be an intraligand MeSC6H4C≡C3ππ* mixed with some atomic contributions of the copper(I) d-orbitals based on DFT computations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.J.M. Birchall, F.L. Bowden, R.N. Haszeldine, A.B.P. Lever, Polyfluoroarenes. Part IX. Decafluorotolan: synthesis, properties and use as an organometallic ligand. J. Chem. Soc. (1967). https://doi.org/10.1039/J19670000747

    Article  Google Scholar 

  2. S. Celedo, A.S.S. De Camargo, M. Fuentealba, V. Artigas, E. Benavente, G. Gonza, Highly emissive host–guest based on nanoclay intercalated with an Eu3+ complex bearing a new Ru2+ organometallic ligand. New J. Chem. 42, 15284–15294 (2018)

    Google Scholar 

  3. F. Juvenal, D. Fortin, P.D. Harvey, A “flexible” rigid rod, trans-Pt(PMe3)2(C≡CC6H4CN)2 (L1), to form 2D [{Cu22-X)2}24-L1)]n polymers (X = Br, I) exhibiting the largest bathochromic emissions. Inorg. Chem. 57, 7208–7221 (2018)

    CAS  PubMed  Google Scholar 

  4. S.M. Gittermann, T.J. Burkey, substitution in alkane solvents: molybdenum-alkane σ bond controls fast ligand addition to molybdenum pentacarbonyl. Chem. Phys. 512, 122–127 (2018)

    CAS  Google Scholar 

  5. I.P. Gloriozov, N.S. Zhulyaev, F. Gam, J. Saillard, Y.F. Oprunenko, 1,6-Methano[10]annulene as prospective organometallic ligand from the annulene family: a DFT study of transition metal π-complexes and their inter-ring haptotropic rearrangements. J. Organomet. Chem. 867, 306–311 (2018)

    CAS  Google Scholar 

  6. K. Liu, Q. Shan, J. Nie, X. Yan, A 2D supramolecular network based on aromatic π ··· π stacking. Z. Anorg. Allg. Chem. 644, 82–85 (2018)

    CAS  Google Scholar 

  7. K. Škoch, I. Císařová, J. Schulz, U. Siemeling, P. Štěpnička, Synthesis and characterization of 1′-(diphenylphosphino)-1-isocyanoferrocene, an organometallic ligand combining two different soft donor moieties, and its Group 11 metal complexes. Dalton Trans. 46, 10339–10354 (2017)

    PubMed  Google Scholar 

  8. X. Zhang, Z. Bao, W. Xu, L. Liu, Y. Liu, Theoretical exploration on the electronic and magnetic properties of (FeCp)n – (n ¼ 1, 2) ligand- functionalized graphene. RSC Adv. 7, 18068–18074 (2017)

    CAS  Google Scholar 

  9. H. Sesolis, J. Dubarle-Offner, C.K. Chan, E. Puig, G. Gontard, P. Winter, A.L. Cooksy, V.W. Yam, H. Amouri, Highly phosphorescent crystals of square-planar platinum complexes with chiral organometallic linkers: homochiral versus heterochiral arrangements, induced circular dichroism, and TD-DFT calculations. Chem. A 2, 8032–8037 (2016)

    Google Scholar 

  10. S.M. El-Hamruni, S.E. Sozerli, D.J. Smith, M.P. Coles, P.B. Hitchcock, Tin and mercury compounds supported by a bulky organometallic ligand incorporating a pendant guanidine functionality. Aust. J. Chem. 67, 1071–1080 (2014)

    CAS  Google Scholar 

  11. K. Barbakadze, G. Lekishvili, N. Lekishvili, Novel ferrocene derivatives with polycyclic spatial groups: synthesis and application. Asian J. Chem. 26, 1315–1317 (2014)

    CAS  Google Scholar 

  12. J. Zakrzewski, G. Bujacz, D. Plazuk, J. Zakrzewski, G. Bujacz, Structural investigation of the interactions of biotinylruthenocene with avidin. Chem. Biol. Interact. 204, 6–12 (2013)

    PubMed  Google Scholar 

  13. A. Damas, M.P. Gullo, M.N. Rager, A. Jutand, A. Barbieri, Near-infrared room temperature emission from a novel class of Ru(II) heteroleptic complexes with quinonoid organometallic linker. Chem. Commun. 49, 3796–3798 (2013)

    CAS  Google Scholar 

  14. R. Matassa, I. Fratoddi, M. Rossi, C. Battocchio, R. Caminiti, M.V. Russo, Two-dimensional networks of Ag nanoparticles bridged by organometallic ligand. J. Phys. Chem. C 116, 15795–15800 (2012)

    CAS  Google Scholar 

  15. C. Zúñiga, D. Sierra, J. Oyarzo, A.H. Klahn, Methoxycarbonylation of styrene by palladium(II) complex containing the diphenylphosphinocyrhetrene ligand. J. Chil. Chem. Soc. 57, 1101–1103 (2012)

    Google Scholar 

  16. M. Ferrer, A. Gutiérrez, L. Rodríguez, O. Rossell, E. Ruiz, M. Engeser, Y. Lorenz, R. Schilling, P. Gómez-Sal, A. Martín, Self-assembly of heterometallic metallomacrocycles via ditopic fluoroaryl gold(I) organometallic metalloligands. Organometallics 31, 1533–1545 (2012)

    CAS  Google Scholar 

  17. S. Aguado-Ullate, J.J. Carbó, O. González-Del Moral, M. Gómez-Pantoja, A. Hernán-Gómez, A. Martín, M. Mena, J.M. Poblet, C. Santamaría, Discovering the chemical reactivity of the molecular oxonitride [{Ti(η5-C5Me5)(μ-O)}33-N)]. J. Organomet. Chem. 696, 4011–4017 (2011)

    CAS  Google Scholar 

  18. K. Wei, J. Ni, Y. Liu, Heterobimetallic metal-complex assemblies constructed from the flexible arm-like ligand 1,10-bis[(3-pyridylamino)carbonyl]ferrocene: structural versatility in the solid state. Inorg. Chem. 49, 1834–1848 (2010)

    CAS  PubMed  Google Scholar 

  19. V. Mereacre, D. Prodius, A.M. Ako, S. Shova, C. Turta, K. Wurst, P. Jaitner, A.K. Powell, New penta-nuclear and hepta-nuclear iron(II, III) complexes with ferrocenedicarboxylic acid. Polyhedron 28, 3551–3555 (2009)

    CAS  Google Scholar 

  20. H. Lang, A. del Villar, B. Walfort, G. Rheinwald, Synthesis and reactivity of platinum(II) and copper(I) coordination colymers; the solid-state structure of {trans-(Ph3PhPt[(C≡CPh)CuBr}n and trans-(Ph3PPt[(C≡CPh)CuN]2. J. Organomet. Chem. 689, 1464–1471 (2004)

    CAS  Google Scholar 

  21. H. Lang, A. Del Villar, B. Walfort, {trans-(Ph3P)2Pt[(μ-σ, η2-C≡CPh)AgOTf]2}n: a novel coordination polymer with Pt(C≡CPh)2 and Ag[μ-OS(O) (CF3)O]2Ag linkages. Inorg. Chem. Commun. 7, 694–697 (2004)

    CAS  Google Scholar 

  22. F. Juvenal, A. Langlois, A. Bonnot, D. Fortin, P.D. Harvey, Luminescent 1D- and 2D-coordination polymers using CuX salts (X = Cl, Br, I) and a metal-containing dithioether ligand. Inorg. Chem. 55, 11096–11109 (2016)

    CAS  PubMed  Google Scholar 

  23. F. Juvenal, A. Bonnot, D. Fortin, P.D. Harvey, The trans-bis(p-thioetherphenylacetynyl)bis(phosphine)platinum(II) ligands: a step towards predictability and crystal design. ACS Omega 2, 7433–7443 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Vicente, M.T. Chicote, M.M. Alvarez-Falcón, P.G. Jones, Platinum(II) and mixed platinum(II)/gold(I) σ-alkynyl complexes. The first anionic σ-alkynyl metal polymers. Organometallics 24, 2764–2772 (2005)

    CAS  Google Scholar 

  25. R.J. Goodfellow, B.F. Taylor, Determination of the magnitudes and signs of phosphorus–phosphorus coupling (2J pp) by hydrogen-I (phosphorus-31) internuclear double resonance measurements on some gold(I), iridiurn(III), mercury(II), palladium(II), platinum-(II) and -(IV), and rhodium(III) complexes containing two, three, or four trialkylphosphine ligands. J. Chem. Soc. Dalton Trans. (1974). https://doi.org/10.1039/DT9740001676

    Article  Google Scholar 

  26. B.R. Buckley, S.E. Dann, H. Heaney, Experimental evidence for the involvement of dinuclear alkynylcopper(I) complexes in alkyne–azide chemistry. Chem. Eur. J. 16, 6278–6284 (2010)

    CAS  PubMed  Google Scholar 

  27. S.S.Y. Chui, M.F.Y. Ng, C. Che, Structure determination of homoleptic Au I, Ag I, and Cu I aryl/alkylethynyl coordination polymers by X-ray powder diffraction. Chem. Eur. J. 11, 1739–1749 (2005)

    CAS  PubMed  Google Scholar 

  28. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji et al., Gaussian 16, Revision B.01 (Gaussian, Inc, Wallingford, 2016)

    Google Scholar 

  29. P. Hohenberg, W. Kohn, The inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Google Scholar 

  30. P. Hohenberg, L.J. Sham, Self-consistent equations including exchange and correlation effects. J. Phys. Rev. 140, 1133–1138 (1965)

    Google Scholar 

  31. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  32. D.R. Salahub, M.C. Zerner, The Challenge of d and f Electrons (American Chemical Society, Washington, D.C, 1989)

    Google Scholar 

  33. R. Bauernschmitt, R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996)

    CAS  Google Scholar 

  34. M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998)

    CAS  Google Scholar 

  35. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large. J. Chem. Phys. 109, 8218–8224 (1998)

    CAS  Google Scholar 

  36. C. Lee, W. Yang, R.G. Parr, Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    CAS  Google Scholar 

  37. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    CAS  Google Scholar 

  38. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chern. Phys. 98, 5648–5652 (1993)

    CAS  Google Scholar 

  39. J.S. Binkley, J.A. People, W.J. Hehre, Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939–947 (1980)

    CAS  Google Scholar 

  40. M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104, 2797–2803 (1982)

    CAS  Google Scholar 

  41. W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. People, J.S. Binkley, Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104, 5039–5048 (1982)

    CAS  Google Scholar 

  42. K.D. Dobbs, W.J. Hehre, Molecular orbital theory of the properties of inorganic and organometallic compounds. 4. Extended basis sets for third-and fourth-row, main-group elements. J. Comput. Chem. 7, 359–378 (1986)

    CAS  Google Scholar 

  43. K. Dobbs, W. Hehre, Molecular-orbital theory of the properties of inorganic and organometallic compounds. 5. Extended basis-sets for 1st-row transition-metals. J. Comput. Chem. 8, 861–879 (1987)

    CAS  Google Scholar 

  44. K.D. Dobbs, W.J. Hehre, Molecular orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis sets for second-row transition metals. J. Comput. Chem. 8, 880–893 (1987)

    CAS  Google Scholar 

  45. A.X.S. Bruker, APEX2, V2008. 6; SADABS V2008/1; SAINT V7. 60A; SHELXTL V6. 14. (Bruker AXS Inc., Madison, 2008)

  46. P.D. Harvey, Organometallic and coordination polymers, and linear and star oligomers using the trans-Pt (PR3)2(C≡C)2 linker. J. Inorg. Organomet. Polym Mater. 27, 3–38 (2017)

    CAS  Google Scholar 

  47. L. Li, L. Liu, A. Zheng, Y. Chang, M. Dai, Z. Ren, H. Li, Cracking the framework of bulk CuCN with flexible bipyrazolyl-based ligands to assemble [CuCN]n-based coordination polymers. Dalton Trans. 39, 7659–7665 (2010)

    CAS  PubMed  Google Scholar 

  48. J. Nitsch, C. Kleeberg, R. Fröhlich, A. Steffen, Luminescent copper(I) halide and pseudohalide phenanthroline complexes revisited: simple structures, complicated excited state behavior. Dalton Trans. 44, 6944–6960 (2015)

    CAS  PubMed  Google Scholar 

  49. Y. Xu, Z. Ren, H. Li, W. Zhang, Syntheses, crystal structures and luminescent properties of two one-dimensional coordination polymers [CuX (dmpzm)]n (X = CN, NCS; dmpzm = bis(3, 5-dimethylpyrazolyl)methane). J. Mol. Struct. 782, 150–156 (2006)

    CAS  Google Scholar 

  50. G.O. Morpurgo, G. Dessy, V. Fares, Crystal structures and spectroscopic properties of the polymeric adducts formed from Cu(CN) and Cu(NCS) with 2, 9-dimethyl-1, 10-phenanthroline. J. Chem. Soc., Dalton Trans. (1984). https://doi.org/10.1039/DT9840000785

    Article  Google Scholar 

  51. A. Kaur, T. Pintauer, Copper(I)–cyanide frameworks through thermal or photodecomposition of the free radical diazo initiator. Eur. J. Inorg. Chem. (2013). https://doi.org/10.1002/ejic.201300495

    Article  Google Scholar 

  52. J.H. Yu, J.Q. Xu, Q.X. Yang, L.Y. Pan, T.G. Wang, C.H. Lü, T.H. Ma, Hydrothermal synthesis, crystal structure and third-order non-linear optical property of a novel one-dimensional copper(I) cyanide–organodiimine coordination polymer [Cu6(CN)6(phen)4]n (phen = 1,10-phenanthroline). J. Mol. Struct. 658, 1–7 (2003)

    CAS  Google Scholar 

  53. X.B. Chen, B. Chen, Y.Z. Li, X.Z. You, Remarkable solvent effects in the hydro-and solvothermal synthesis of copper-1, 10-phenanthroline complexes. Appl. Organomet. Chem. 21, 777–781 (2007)

    CAS  Google Scholar 

  54. Y.Y. Lin, S.W. Lai, C.M. Che, W.F. Fu, Z.Y. Zhou, N. Zhu, Structural variations and spectroscopic properties of luminescent mono-and multinuclear silver(I) and copper(I) complexes bearing phosphine and cyanide ligands. Inorg. Chem. 44, 1511–1524 (2005)

    CAS  PubMed  Google Scholar 

  55. A.N. Ley, L.E. Dunaway, T.P. Brewster, M.D. Dembo, T.D. Harris, F. Baril-Robert, X. Li, H.H. Patterson, R.D. Pike, Reversible luminescent reaction of amines with copper(I) cyanide. Chem. Commun. 46, 4565–4567 (2010)

    CAS  Google Scholar 

  56. M.M. Olmstead, G. Speier, L. Szabó, Structure of [Cu(CN)(py)2]. Acta Crystallogr. C 49, 370–372 (1993)

    Google Scholar 

  57. S.E.D.H. Etaiw, S.A. Amer, M.M. El-Bendary, Self-assembly of coordination polymers constructed from CuCN and unidentate pyridine bases. J. Mater. Sci. 45, 1307–1314 (2010)

    CAS  Google Scholar 

  58. A.V. Ermolaev, A.I. Smolentsev, Y.V. Mironov, Crystal structure of a new modification of the cyanide-bridged copper(I) coordination compound [CuCN(bpy)]n. J. Struct. Chem. 55, 731–733 (2014)

    CAS  Google Scholar 

  59. W.X. Wang, L. Wang, H.X. Li, H.Y. Li, J.P. Lang, [CunXn]-based coordination polymers with bis(4-iodo-1H-pyrazol-1-yl)methane and bis(4-iodo-3,5-dimethyl-1H-pyrazol-1-yl) methane: solvothermal syntheses, crystal structures, and luminescent properties. Z. Anorg. Allg. Chem. 639, 618–625 (2013)

    CAS  Google Scholar 

  60. Y.N. Chi, F.Y. Cui, Y.Q. Xu, C.W. Hu, The tuning effect of 2-amino-4, 6-dipyridylpyrimidine isomers on the structural dimensionalities and motifs of copper(I) cyanide complexes. Eur. J. Inorg. Chem. 2007, 4375–4384 (2007)

    Google Scholar 

  61. T. Kitamura, T. Tanaka, H. Taniguchi, P.J. Stang, Selective coupling reactions of alkynyl(pheny1)iodonium tosylates with alkynylcopper reagents. J. Chem. Soc. Perkin Trans. 1, 2892–2893 (1991)

    Google Scholar 

  62. X.Y. Chang, K.H. Low, J.Y. Wang, J.S. Huang, C.M. Che, From cluster to polymer: ligand cone angle controlled syntheses and structures of copper(I) alkynyl complexes. Angew. Chem. Int. Ed. 55, 10312–10316 (2016)

    CAS  Google Scholar 

  63. I. Andrés-tomé, C.J. Winscom, P. Coppo, Copper(I) trinuclear phosphorescent complexes with tuneable optical and photophysical properties. Eur. J. Inorg. Chem. (2010). https://doi.org/10.1002/ejic.201000514

    Article  Google Scholar 

  64. W. Chan, Z. Zhang, T.C.W. Mak, C. Che, A highly luminescent tetranuclear copper(I) cluster: structure and photophysical properties. J. Organomet. Chem. 556, 169–172 (1998)

    CAS  Google Scholar 

  65. H. Shi, Y. Huang, J. Sun, J. Jiang, Z. Luo, H. Ling, C. Lam, H. Chao, Assembly of BF4 , PF6 , ClO4 and F with trinuclear copper(I) acetylide complexes bearing amide groups: structural diversity, photophysics and anion binding properties. RSC Adv. 5, 89669–89681 (2015)

    CAS  Google Scholar 

  66. W. Lo, C. Lam, V.W. Yam, N. Zhu, K. Cheung, S. Fathallah, S. Messaoudi, B. Le Guennic, S. Kahlal, Synthesis, photophysics, electrochemistry, theoretical and transient absorption studies of luminescent copper(I) and silver(I) diynyl complexes. X-ray crystal structures of [Cu3 (μ-dppm)331-C⋮ CC⋮ CPh)2] PF6 and [Cu3 (μ-dppm)331-C⋮ CC⋮ CH)2] PF6. J. Am. Chem. Soc. 126, 7300–7310 (2004)

    CAS  PubMed  Google Scholar 

  67. I.S. Krytchankou, I.O. Koshevoy, V.V. Gurzhiy, V.A. Pomogaev, S.P. Tunik, Luminescence solvato- and vapochromism of alkynyl-phosphine copper clusters. Inorg. Chem. 54, 8288–8297 (2015)

    CAS  PubMed  Google Scholar 

  68. I.S. Kritchenkov, Y. Gitlina, I.O. Koshevoy, A.S. Melnikov, S.P. Tunik, Luminescent silver–copper “hourglass” hepta- and decanuclear alkynyl-phosphine clusters. Eur. J. Inorg. Chem. (2018). https://doi.org/10.1002/ejic.201800631

    Article  Google Scholar 

  69. C. Chan, K. Cheung, W.H. Lam, E.C. Cheng, N. Zhu, S.W. Choi, V.W. Yam, Luminescent molecular copper(I) alkynyl open cubes:synthesis, structural characterization, electronic structure, photophysics, and photochemistry. Chem. Asian J. 1(1–2), 273–286 (2006)

    CAS  PubMed  Google Scholar 

  70. C. Mealli, S.S. Godinho, M.J. Calhorda, Theoretical analysis of bonding and stereochemical trends in doubly bridged copper(I)−copper(I) dimers. Organometallics 20, 1734–1742 (2001)

    CAS  Google Scholar 

  71. C.L. Chan, K.L. Cheung, W.H. Lam, E.C.C. Cheng, N. Zhu, S.W.K. Choi, V.W.W. Yam, Luminescent molecular copper(I) alkynyl open cubes: synthesis, structural characterization, electronic structure, photophysics, and photochemistry. Chem. Asian J. 1, 273–286 (2006)

    CAS  PubMed  Google Scholar 

  72. P. Coppo, T. Marcelli, On the emission of bis-arylacetylide trinuclear Cu(I) complexes. J. Organomet. Chem. 710, 86–89 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre D. Harvey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 9 (PDF 2177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juvenal, F., Harvey, P.D. Reactivity of the (trans-Pt(PMe3)2(C≡CC6H4SMe)2) Ligand with Copper Cyanide: Formation of the [Cu22-C≡CC6H4SMe)2]n Polymer. J Inorg Organomet Polym 30, 159–168 (2020). https://doi.org/10.1007/s10904-019-01298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01298-7

Keywords

Navigation