Skip to main content

Advertisement

Log in

Textile Dyes Degradation from Activated Peroxomonosulphate by Green synthesize Silver Nanoparticles: A Kinetic Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present study reports the green synthesis of Silver nanoparticles (AgNPs) using Azadirachta indica (neem) leaf broth as reducing and capping agent in aqueous solution. The effect of different temperature on the morphology of dispersed AgNPs was studied. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis results indicate that optimum temperature is 30 °C for the synthesis of nanoparticles. Fourier Transform Infrared Spectroscopy (FTIR) studies explain the presence of biomolecules such as terpenoids and flavanones responsible for capping and stabilizing of nanoparticles (NPs). The synthesized AgNPs showed excellent catalytic activity in oxidative degradation of Acid orange 10 (AO10) and Acid orange 52 (AO52) by peroxomonosulphate (PMS) in an aqueous medium. It was observed that the synthesized Nano-catalyst could effectively decompose oxidant to generate sulphate radicals (SRs) and degrade both dyes in aqueous solution by advanced oxidation process (AOP). The maximum degradation efficiency of AO10 reached 84% in 32 min and 90% in 15 min for AO52. The effect of several parameters such as the different concentration of dye, PMS, AgNPs and pH on the degradation efficiency of the process was investigated and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses used for determining intermediates and end products during the degradation process. The AgNPs are expected to be a suitable alternative and play an important role in the fields of catalysis and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Scheme 2
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Yan, Y. Yuanb, P.J. Dyson, Dalton Trans. 42, 13294–13304 (2013). https://doi.org/10.1039/C3DT51180D

    Article  CAS  PubMed  Google Scholar 

  2. R.A. Soomro, A. Nafady, N. Memon, T.H. Sherazi, N.H. Kalwar, Talanta 130, 415–422 (2014). https://doi.org/10.1016/j.talanta.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  3. A. Goel, R. Bhatt, Neetu, Int. J. Res. Chem. Environ. 2, 210–217 (2012)

    CAS  Google Scholar 

  4. N. Nagar, V. Devra, J. Envion. Chem. Eng. 5, 5793–5800 (2017). https://doi.org/10.1016/j.jece.2017.11.014

    Article  CAS  Google Scholar 

  5. Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi, T. Uruga, J. Biotechnol. 128, 648–653 (2007). https://doi.org/10.1016/j.jbiotec.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  6. I. Willner, R. Baron, B. Willner, Adv. Mater. 18, 1109–1120 (2006). https://doi.org/10.1002/adma.200501865

    Article  CAS  Google Scholar 

  7. B.H. Patel, M.Z. Channiwala, S.B. Chaudhari, A.A. Mandot, J. Envion. Chem. Eng. 4, 2163–2169 (2016). https://doi.org/10.1016/j.jece.2016.03.046

    Article  CAS  Google Scholar 

  8. S. Ahmed, S. Ullah, M. Ahmad, B.L. Swami, S. Ikram, J. Radiat. Res. Appl. Sci. 9, 1–7 (2016). https://doi.org/10.1016/j.jrras.2015.06.006

    Article  CAS  Google Scholar 

  9. N. Nagar, S. Jain, P. Kachhawah, V. Devra, Korean J. Chem. Eng. 33, 2990–2997 (2016). https://doi.org/10.1007/s11814-016-0156-9

    Article  CAS  Google Scholar 

  10. K. Khaldi, M. Hadjel, A. Benyoucef, Surf. Eng. Appl. Electrochem. 54, 194–202 (2018). https://doi.org/10.3103/S1068375518020084

    Article  Google Scholar 

  11. A. Belalia, A. Zehhaf, A. Benyoucef, Polym. Sci. Ser, B+ 60, 816–824 (2018). https://doi.org/10.1134/S1560090418060039

    Article  CAS  Google Scholar 

  12. A. Ahmad, A. Idris, B. Hameed, Desalin. Water Treat. 41, 224–231 (2012). https://doi.org/10.1080/19443994.2012.664717

    Article  CAS  Google Scholar 

  13. L. Ahmad, W.A. Harris, B.S. Ooi, J. Teknol. 36, 31–44 (2012). https://doi.org/10.11113/jt.v36.581

    Article  Google Scholar 

  14. R. Singh, M. Kumar, L. Tashi, H. Khajuria, H.N. Sheikh, Nanochem. Res. 3, 149–159 (2018). https://doi.org/10.22036/ncr.2018.02.004

    Article  CAS  Google Scholar 

  15. Y. Yuan, T. Luo, J. Xu, J. Li, F. Wu, M. Brigante, G. Mailhot, Chem. Eng. J. 362, 183–189 (2019). https://doi.org/10.1016/j.cej.2019.01.010

    Article  CAS  Google Scholar 

  16. F. Zhu, C. Liu, H. Ling, H. Jiang, A. Wu, Li, Appl. Catal. B 242, 238–248 (2019). https://doi.org/10.1016/j.apcatb.2018.09.088

    Article  CAS  Google Scholar 

  17. S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Chemosphere. 101, 86–92 (2014). https://doi.org/10.1016/j.chemosphere.2013.12.037

    Article  CAS  PubMed  Google Scholar 

  18. J. Madhavan, P. Maruthamuthu, S. Murugesan, M. Ashokkumar, Appl. Catal. A 368, 35–39 (2009). https://doi.org/10.1016/j.apcata.2009.08.008

    Article  CAS  Google Scholar 

  19. J. Madhavan, B. Muthuraaman, S. Murugesan, S. Anandan, P. Maruthamuthu, Sol. Energy Mater.Sol. Cells. 90, 1875–1887 (2006). https://doi.org/10.1016/j.solmat.2005.12.001

    Article  CAS  Google Scholar 

  20. J. Zhang, M. Chen, L. Zhu, RSC Adv. 6, 758–768 (2016). https://doi.org/10.1039/C5RA22457H

    Article  CAS  Google Scholar 

  21. X.Y. Chen, J.W. Chen, X.L. Qiao, D.G. Wang, X.Y. Cai, Appl. Catal. B 80, 116–121 (2008). https://doi.org/10.1016/j.chemosphere.2006.10.032

    Article  CAS  Google Scholar 

  22. Z. Huixuan, L. Huarui, W. Zhongjuan, L. Bo, C. Xiuwen, C. Qingfeng, J. Nanosci. Nanotechnol. 18, 6942–6948 (2018). https://doi.org/10.1166/jnn.2018.15800

    Article  CAS  Google Scholar 

  23. A. Meetani, M.A. Rauf, S. Hisaindee, A. Khaleel, A. Alzamly, A. Ahmad, RSC Adv. 1, 490–497 (2011). https://doi.org/10.1039/C1RA00177A

    Article  CAS  Google Scholar 

  24. A. Obeid, D. Bée, S.B. Talbot, V. Jaafar, S. Dupuis, V. Abramson, M. Cabuil, Welschbillig, J. Colloid Interface Sci. 410, 52–58 (2013). https://doi.org/10.1016/j.jcis.2013.07.057

    Article  CAS  PubMed  Google Scholar 

  25. P. Banerjee, M. Satapathy, A. Mukhopahayay, P. Das, Bioresourc. Bioprocess. 1, 1–10 (2014). https://doi.org/10.1186/s40643-014-0003-y

    Article  Google Scholar 

  26. S. Jain, N. Nagar, V. Devra, Int. J. Curr. Eng. Technol. 5, 966–973 (2015). E-ISSN 2277–4106

    Google Scholar 

  27. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interface Sci. 275, 496–502 (2004). https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  28. S. Hisaindee, M.A. Meetani, M.A. Rauf, Trends Anal. Chem. 49, 31–44 (2013). https://doi.org/10.1016/j.trac.2013.03.011

    Article  CAS  Google Scholar 

  29. J. Zhang, M. Chen, L. Zhu, RSC Adv. 6, 47562–47569 (2016). https://doi.org/10.1039/C6RA07231C

    Article  CAS  Google Scholar 

  30. T. Chen, Y. Zheng, J.-M. Lin, G. Chen, J. Am. Soc. Mass Spectrom. 19, 997–1003 (2008). https://doi.org/10.1016/j.jasms.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  31. Q. Cai, Y.-Z. Zhu, Z.-S. Wei, J.-Q. Hu, S.-D. Pan, R.-Y. Jin, C.-Y. Xiao, M.-C. Dong, Sci. Total Environ. 580, 966–973 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.047

    Article  CAS  PubMed  Google Scholar 

  32. N. Nagar, V. Devra, Environ. Technol. Innov. 10, 281–289 (2018). https://doi.org/10.1016/j.eti.2018.03.005

    Article  Google Scholar 

  33. R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang, D.D. Dionysiou, Curr. Opin. Chem. Eng. 19, 51–58 (2018). https://doi.org/10.1016/j.coche.2017.12.005

    Article  Google Scholar 

  34. J. Santhanalakshmi, V. Dhanalakshmi, Indian J. Sci. Technol. 5, 3234–3838. ISSN:0974–6846 (2012)

    Google Scholar 

  35. K. Lal, A. Garg, Process Saf. Environ. Prot. (PSEP) 111, 766–774 (2017). https://doi.org/10.1016/j.psep.2017.09.005

    Article  CAS  Google Scholar 

  36. R.J. Dougherty, J. Singh, V.V. Krishnan, J. Mol. Struct. 1131, 196–200 (2017). https://doi.org/10.1016/j.molstruc.2016.11.038

    Article  CAS  Google Scholar 

  37. C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, J. Hazard. Mater. 276, 452–460 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.068

    Article  CAS  PubMed  Google Scholar 

  38. C. Zhu, F. Zhu, D.D. Dionysiou, D. Zhou, F. Fang, J. Gao, Water Res. 139, 66–73 (2018). https://doi.org/10.1016/j.watres.2018.03.069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Department of Science and Technology sponsored FIST Laboratory of our institution for experimental work, MNIT Jaipur for SEM and TEM analysis of synthesis of AgNPs, SAIF (Punjab University, Chandigarh) for LC-MS analysis and University Grants Commission for financial support as JRF (Ref. No: 22/12/2013(ii)EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Devra.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagar, N., Devra, V. Textile Dyes Degradation from Activated Peroxomonosulphate by Green synthesize Silver Nanoparticles: A Kinetic Study. J Inorg Organomet Polym 29, 1645–1657 (2019). https://doi.org/10.1007/s10904-019-01127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01127-x

Keywords

Navigation