Skip to main content
Log in

Novel Superthermite Nanocomposite Hybrid Material Based on CuO Coated Carbon Nanofibers for Advanced Energetic Systems

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The surfaces of carbon nanofibers (CNFs) were first pretreated with a catalyst to enable metal deposition and subsequently coated with a nanoscale layer of copper through electroless deposition. The resulting Cu-coated CNF hybrid was annealed at 250 °C to obtain CuO-coated CNFs that were ultrasonically suspended with aluminum nanoparticles (100 nm) in isopropyl alcohol to produce nanothermite colloid; where CuO coating can act as an effective oxidizer for Al nanoparticles. The developed nanothermite colloid was integrated and effectively dispersed in molten tri-nitro toluene (TNT). This novel colloid offers an increase in TNT shock wave strength of by 26% using a ballistic mortar test. Moreover it offers an increase total heat release by 75% using DSC. This is the first time ever to report on nanothermite particles supported on CNFs for highly energetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.B. Teo et al., Catalytic synthesis of carbon nanotubes and nanofibers. Encycl. Nanosci. Nanotechnol. 10(1), (2003)

  2. E. Hammel et al., Carbon nanofibers for composite applications. Carbon, 42(5), 1153–1158 (2004)

    Article  CAS  Google Scholar 

  3. I. Kim, S. Lee, Fabrication of carbon nanofiber/Cu composite powder by electroless plating and microstructural evolution during thermal exposure. Scripta Mater. 52(10), 1045–1049 (2005)

    Article  CAS  Google Scholar 

  4. S. Arai et al., Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochem. Commun. 6(10), 1029–1031 (2004)

    Article  CAS  Google Scholar 

  5. M. Melchionna et al., Carbon nanotubes and catalysis: the many facets of a successful marriage. Catal. Sci. Technol. 5(8), 3859–3875 (2015)

    Article  CAS  Google Scholar 

  6. S. Arai, M. Endo, Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochem. Commun. 5(9), 797–799 (2003)

    Article  CAS  Google Scholar 

  7. S. Arai et al., Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon, 42(3), 641–644, (2004)

    Article  CAS  Google Scholar 

  8. K. Yamagishi et al., Adsorbates formed on non-conducting substrates by two-step catalyzation pretreatment for electroless plating. J. Surf. Finish. Soc. Jpn. 54(2), 150–154 (2003)

    Article  CAS  Google Scholar 

  9. A.M. Abdalla et al., Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties. Mater. Res. Express 3(12), 125014 (2016)

    Article  CAS  Google Scholar 

  10. Q. Li et al., Coating of carbon nanotube with nickel by electroless plating method. Japan. J. Appl. Phys. 36(4), 501–503 (1997)

    Article  Google Scholar 

  11. V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67(13), 1920–1928 (1995)

    Article  CAS  Google Scholar 

  12. S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    Article  CAS  Google Scholar 

  13. A.K. Mohamed, Experimental and Numerical Modelling of Explosion Conversion and Effects, M. Sc., 2013

  14. S. Elbasuney et al., Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture Fuel, 208, 296–304, (2017)

  15. J.A. Conkling, C. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory (CRC press, Boca Raton, 2010)

    Book  Google Scholar 

  16. N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants, Explos., Pyrotech. 37(2), 143–155 (2012)

    Article  CAS  Google Scholar 

  17. S.H. Fischer, M.C. Grubelich, The use of Combustible Metals in Explosive Incendiary Devices (Sandia National Labs., Albuquerque, NM 1996)

    Google Scholar 

  18. T.H. Klapötke, High Energy Density Mater. 125, (2007)

  19. M.L. Pantoya, J.J. Granier, Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants, Explos., Pyrotech. 30, 53–62 (2005)

    Article  CAS  Google Scholar 

  20. D.L. Hastings, E.L. Dreizin, Reactive structural materials: preparation and characterization. Adv. Eng. Mater. 20, 1700631 (2018)

    Article  CAS  Google Scholar 

  21. Andréa, Nicollet et al., Investigation of Al/CuO multilayered thermite ignition. J. Appl. Phys. 121, (2017)

  22. C. Rossi, Two Decades of Research on Nano-Energetic Materials. Propellants, Explos., Pyrotech. 39, 323–327 (2014)

    Article  CAS  Google Scholar 

  23. C. Rossi, D. Esteve, Micropyrotechnics, a new technology for making energetic microsystems: review and prospective. Sens. Actuators A. 120, 297–310 (2005)

    Article  CAS  Google Scholar 

  24. S.-M. Bak et al., Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition. J. Mater. Chem. 21, 1984–1990 (2011)

    Article  CAS  Google Scholar 

  25. M. Jagannatham et al., Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites. Appl. Surf. Sci. 324, 475–481 (2015)

    Article  CAS  Google Scholar 

  26. P. Sahoo, S.K. Das, Tribology of electroless nickel coatings–a review. Mater.Des. 32, 1760–1775 (2011)

    Article  CAS  Google Scholar 

  27. L.-M. Ang et al., Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 11, 2115–2118 (1999)

    Article  CAS  Google Scholar 

  28. F. Wang et al., The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process. Carbon, 43, 1716–1721, (2005)

    Article  CAS  Google Scholar 

  29. M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results. Propellants, Explos., Pyrotech. 24, 280–285 (1999)

    Article  Google Scholar 

  30. T. Tillotson et al., Sol–gel processing of energetic materials. J. Non-Cryst. Solids 225, 358–363 (1998)

    Article  CAS  Google Scholar 

  31. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Elbasuney.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Zaky, M.G., Sahu, R.P. et al. Novel Superthermite Nanocomposite Hybrid Material Based on CuO Coated Carbon Nanofibers for Advanced Energetic Systems. J Inorg Organomet Polym 29, 851–858 (2019). https://doi.org/10.1007/s10904-018-01059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-01059-y

Keywords

Navigation