Skip to main content
Log in

A quadratic penalty method for hypergraph matching

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Hypergraph matching is a fundamental problem in computer vision. Mathematically, it maximizes a polynomial objective function, subject to assignment constraints. In this paper, we reformulate the hypergraph matching problem as a sparse constrained optimization problem. By dropping the sparse constraint, we show that the resulting relaxation problem can recover the global minimizer of the original problem. This property heavily depends on the special structures of hypergraph matching. The critical step in solving the original problem is to identify the location of nonzero entries (referred to as the support set) in a global minimizer. Inspired by such observation, we apply the quadratic penalty method to solve the relaxation problem. Under reasonable assumptions, we show that the support set of the global minimizer in a hypergraph matching problem can be correctly identified when the number of iterations is sufficiently large. A projected gradient method is applied as a subsolver to solve the quadratic penalty subproblem. Numerical results demonstrate that the exact recovery of the support set indeed happens, and the proposed algorithm is efficient in terms of both accuracy and CPU time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(\hbox {mean}(\Vert f_{l_1j_1k_1}-f_{l_2j_2k_2}\Vert )=\frac{\sum _{\mathcal {B}_{l_1l_2j_1j_2k_1k_2}>0}\Vert f_{l_1j_1k_1}-f_{l_2j_2k_2}\Vert }{\hbox {number of } B_{l_1l_2j_1j_2k_1k_2}>0}\).

  2. Downloaded from http://vasc.ri.cmu.edu/idb/html/motion/house/.

  3. Downloaded from http://www.umiacs.umd.edu/~zhengyf/PointMatching.htm.

References

  1. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found. Comput. Math. 14(1), 63–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. IEEE Conf. Comput. Vis. Pattern Recognit. 1, 26–33 (2005)

    Google Scholar 

  4. Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burdakov, O.P., Kanzow, C., Schwartz, A.: Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 26(1), 397–425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39(1), 93–116 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cervinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. 160(1), 353–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Guo, L., Lu, Z., Ye, J.J.: An augmented lagrangian method for non-lipschitz nonconvex programming. SIAM J. Numer. Anal. 55, 168–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, C.F., Li, Q.N., Qi, L.Q., Yan, H.: A quadratic penalty method for hypergraph matching. arXiv:1704.04581v1 (2017)

  10. Dai, Y.-H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Program. 106(3), 403–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duchenne, O., Bach, F., Kweon, I.-S., Ponce, J.: A tensor-based algorithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2383–2395 (2011)

    Article  Google Scholar 

  12. Egozi, A., Keller, Y., Guterman, H.: A probabilistic approach to spectral graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 18–27 (2013)

    Article  Google Scholar 

  13. Jiang, B., Liu, Y.F., Wen, Z.: \(L_p\)-norm regularization algorithms for optimization over permutation matrices. SIAM J. Optim. 26(4), 2284–2313 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, H., Drew, M.S., Li, Z.-N.: Matching by linear programming and successive convexification. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 959–975 (2007)

    Article  Google Scholar 

  15. Karp, R.M.: Reducibility Among Combinatorial Problems. Complexity of Computer Computations. Springer US, pp. 85–103 (1972)

  16. Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1633–1640 (2011)

  17. Lee, J.-H., Won, C.-H.: Topology preserving relaxation labelling for nonrigid point matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 427–432 (2011)

    Article  Google Scholar 

  18. Li, X., Song, W.: The first-order necessary conditions for sparsity constrained optimization. J. Oper. Res. Soc. China 3(4), 521–535 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2014)

    Article  Google Scholar 

  20. Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. 23(4), 2448–2478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 187–199 (2003)

    Article  Google Scholar 

  22. Nguyen, Q., Tudisco, F., Gautier, A., Hein, M.: An efficient multilinear optimization framework for hypergraph matching. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1054–1075 (2017)

    Article  Google Scholar 

  23. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Pan, L., Xiu, N., Fan, J.: Optimality conditions for sparse nonlinear programming. Sci. China Math. 60(5), 759–776 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan, L., Xiu, N., Zhou, S.: On solutions of sparsity constrained optimization. J. Oper. Res. Soc. China 3(4), 421–439 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pan, L., Zhou, S., Xiu, N., Qi, H.: A convergent iterative hard thresholding for sparsity and nonnegativity constrained optimization. Pac. J. Optim. 13(2), 325–353 (2017)

    MathSciNet  Google Scholar 

  27. Sun, W.Y., Yuan, Y.-X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer, New York (2006)

    MATH  Google Scholar 

  28. Wu, M.-Y., Dai, D.-Q., Yan, H.: PRL-dock: protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins. Struct. Funct. Genet. 80(9), 2137–2153 (2012)

    Article  Google Scholar 

  29. Yan, H.: Efficient matching and retrieval of gene expression time series data based on spectral information. In: International Conference on Computational Science and Its Applications, pp. 357–373 (2005)

  30. Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., Chu, S.M.: Discrete hyper-graph matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1520–1528 (2015)

  31. Zaragoza, J., Chin, T.-J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2339–2346 (2013)

  32. Zaragoza, J., Chin, T.-J., Tran, Q.-H., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1285–1298 (2014)

    Article  Google Scholar 

  33. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

  34. Zhou, J., Yan, H., Zhu, Y.: Local topology preserved tensor models for graph matching. In: International Conference on Systems, Man, and Cybernetics, pp. 2153–2157 (2015)

Download references

Acknowledgements

The authors would like to thank Dr. Yafeng Liu from Academy of Mathematics and Systems Science, Dr. Bo Jiang from Nanjing Normal University, and Dr. Lili Pan from Beijing Jiaotong University for discussions and insightful comments on this paper. We are also grateful to two anonymous reviewers for their valuable comments, which further improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingna Li.

Additional information

Chunfeng Cui was supported by the Research Grants Council (RGC) of Hong Kong (Project C1007-15G). Qingna Li was supported by NSFC 11671036. Liqun Qi was supported by the Research Grants Council (RGC) of Hong Kong (Project C1007-15G). Hong Yan was supported by the Research Grants Council (RGC) of Hong Kong (Project C1007-15G).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Li, Q., Qi, L. et al. A quadratic penalty method for hypergraph matching. J Glob Optim 70, 237–259 (2018). https://doi.org/10.1007/s10898-017-0583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0583-0

Keywords

Navigation