Skip to main content

Advertisement

Log in

Exploring the Gamma-Ray Enhanced NIR-Luminescence and Cytotoxic Potential of Lanthanide-Naphthalene Dicarboxylate based Metal–Organic Frameworks

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this investigation, we explore the integration of lanthanides into Metal–Organic Frameworks (MOFs) to enable Near-Infrared (NIR) emission. Specifically, we focus on Lanthanide-Naphthalene Dicarboxylate based MOFs (Ln-MOFs), incorporating elements such as Praseodymium (Pr), Samarium (Sm), Dysprosium (Dy), and Erbium (Er). The synthesis of Ln-MOFs is achieved via the hydrothermal method. The structure, morphology, thermal stability, and luminescence properties of synthesized Ln-MOFs have been evaluated through different characterization techniques. Upon photoexcitation at 350 nm, Ln-MOFs show the emission in the Visible and NIR region. Further, the luminescence intensity of Ln-MOFs enhanced by 2–3 folds in the visible region and 6–8 folds in NIR region after exposing to Gamma irradiation at 150 kGy. Cytotoxic effect on the viability of MDA-MB 231 and MDA-MB 468 Triple negative breast cancer (TNBC) cells was evaluated by MTT assay. The results revealed that among all synthesized MOFs, Pr-MOF exhibited an aggressive cytotoxic effect. Additionally, analysis of phase-contrast microscopy data indicates that Pr-MOF induces alterations in the morphology of both MDA-MB 231 and MDA-MB 468 TNBC cells when compared to untreated controls. The findings in this study reveal the utilization of Ln-MOFs for studying cytotoxicity and highlight their ability to enhance near-infrared (NIR) emission when exposed to gamma radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chung W-T, Mekhemer IMA, Mohamed MG, Elewa AM, El-Mahdy AFM, Chou H-H et al (2023) Recent advances in metal/covalent organic frameworks based materials: their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 483:215066. https://doi.org/10.1016/j.ccr.2023.215066

    Article  CAS  Google Scholar 

  2. Zhang Q, Yan S, Yan X, Lv Y (2023) Recent advances in metal-organic frameworks: synthesis, application and toxicity. Sci Total Environ 902:165944. https://doi.org/10.1016/j.scitotenv.2023.165944

    Article  CAS  PubMed  Google Scholar 

  3. Felix Sahayaraj A, Joy Prabu H, Maniraj J, Kannan M, Bharathi M, Diwahar P et al (2023) Metal-organic frameworks (MOFs): the next generation of materials for catalysis, gas storage, and separation. J Inorg Organomet Polym Mater 33(7):1757–1781. https://doi.org/10.1007/s10904-023-02657-1

    Article  CAS  Google Scholar 

  4. Tu TN, Nguyen HTD, Tran NT (2019) Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity. Inorg Chem Front 6(9):2441–2447. https://doi.org/10.1039/C9QI00543A

    Article  CAS  Google Scholar 

  5. Wang H, Wang S, Li H, Chen X (2021) Syntheses, structures and luminescent properties of Eu- and Tb-MOFs with 3,5-pyridinedicarboxylate and 1,2-benzenedicarboxylate. J Fluoresc 31(5):1393–1399. https://doi.org/10.1007/s10895-021-02763-8

    Article  CAS  PubMed  Google Scholar 

  6. Tu TN, Phan NQ, Vu TT, Nguyen HL, Cordova KE, Furukawa H (2016) High proton conductivity at low relative humidity in an anionic Fe-based metal–organic framework. J Mater Chem A 4(10):3638–3641. https://doi.org/10.1039/C5TA10467J

    Article  CAS  Google Scholar 

  7. Rao PA, Rao AV, Saha A, Maddila S, Mukkamala SB (2022) Neodymium-based metal-organic framework as an efficient catalyst for green synthesis of benzylidene-2-phenylhydrazine analogues. Chem Data Collect 41:100914. https://doi.org/10.1016/j.cdc.2022.100914

    Article  CAS  Google Scholar 

  8. Doan SH, Tran NKQ, Pham PH, Nguyen VHH, Nguyen NN, Ha PTM et al (2019) (2019) A new synthetic pathway to triphenylpyridines via cascade reactions utilizing a new iron-organic framework as a recyclable heterogeneous catalyst. Eur J Org Chem 13:2382–2389. https://doi.org/10.1002/ejoc.201900094

    Article  CAS  Google Scholar 

  9. Moharramnejad M, Ehsani A, Shahi M, Gharanli S, Saremi H, Malekshah RE et al (2023) MOF as nanoscale drug delivery devices: synthesis and recent progress in biomedical applications. J Drug Delivery Sci Technol 81:104285. https://doi.org/10.1016/j.jddst.2023.104285

    Article  CAS  Google Scholar 

  10. Pettinari C, Tombesi A (2023) MOFs for electrochemical energy conversion and storage. Inorganics 11(2):65. https://doi.org/10.3390/inorganics11020065

    Article  CAS  Google Scholar 

  11. Remya VR, Kurian M (2019) Synthesis and catalytic applications of metal–organic frameworks: a review on recent literature. Int Nano Lett 9(1):17–29. https://doi.org/10.1007/s40089-018-0255-1

    Article  CAS  Google Scholar 

  12. Tu TN, Pham TM, Nguyen QH, Tran NT, Le VN, Ngo LH et al (2024) Metal–organic frameworks for aromatic-based VOC capture. Sep Purif Technol 333:125883. https://doi.org/10.1016/j.seppur.2023.125883

    Article  CAS  Google Scholar 

  13. Cui Y, Yue Y, Qian G, Chen B (2012) Luminescent functional metal-organic frameworks. Chem Rev 112(2):1126–1162. https://doi.org/10.1021/cr200101d

    Article  CAS  PubMed  Google Scholar 

  14. Sun S, Zhao Y, Wang J, Pei R (2022) Lanthanide-based MOFs: synthesis approaches and applications in cancer diagnosis and therapy. J Mater Chem B 10(46):9535–9564. https://doi.org/10.1039/D2TB01884E

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen HTT, Tu TN, Nguyen MV, Lo THN, Furukawa H, Nguyen NN et al (2018) Combining linker design and linker-exchange strategies for the synthesis of a stable large-pore Zr-based metal-organic framework. ACS Appl Mater Interfaces 10(41):35462–35468. https://doi.org/10.1021/acsami.8b11037

    Article  CAS  PubMed  Google Scholar 

  16. Rocha J, Brites CDS, Carlos LD (2016) Lanthanide organic framework luminescent thermometers. Chem A Eur J 22(42):14782–14795. https://doi.org/10.1002/chem.201600860

    Article  CAS  Google Scholar 

  17. Geranmayeh S, Mohammadnejad M, Abbasi A (2023) Ln based meta-organic framework for fluorescence “turn off-on” sensing of Hg2+. J Fluoresc 33(3):1017–1026. https://doi.org/10.1007/s10895-022-03124-9

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Wang H, Gu W, Liu X (2023) Synthesis, structure and near infrared fluorescence property of a New Nd-MOF based on a triangular benzylamine ligand. J Fluoresc 33(2):595–599. https://doi.org/10.1007/s10895-022-03048-4

    Article  CAS  PubMed  Google Scholar 

  19. Verma A, Hossain SKS, Sunkari SS, Reibenspies J, Saha S (2021) Ligand influence versus electronic configuration of d-metal ion in determining the fate of NIR emission from LnIII ions: a case study with CuII, NiII and ZnII complexes. New J Chem 45(5):2696–2709. https://doi.org/10.1039/D0NJ04020G

    Article  CAS  Google Scholar 

  20. Nguyen TN, Eliseeva SV, Gładysiak A, Petoud S, Stylianou KC (2020) Design of lanthanide-based metal–organic frameworks with enhanced near-infrared emission. J Mater Chem A 8(20):10188–10192. https://doi.org/10.1039/D0TA01677B

    Article  CAS  Google Scholar 

  21. Rai VN, Raja Sekhar BN, Kher S, Deb SK (2010) Effect of gamma ray irradiation on optical properties of Nd doped phosphate glass. J Lumin 130(4):582–586. https://doi.org/10.1016/j.jlumin.2009.10.034

    Article  CAS  Google Scholar 

  22. Vasil’ev AN (2008) From luminescence non-linearity to scintillation non-proportionality. IEEE Trans Nucl Sci 55(3):1054–1061. https://doi.org/10.1109/tns.2007.914367

    Article  CAS  Google Scholar 

  23. Bedyal AK, Kumar V, Ntwaeaborwa OM, Swart HC (2016) Effect of swift heavy ion irradiation on structural, optical and luminescence properties of SrAl2O4:Eu2+, Dy3+ nanophosphor. Radiat Phys Chem 122:48–54. https://doi.org/10.1016/j.radphyschem.2016.01.017

    Article  CAS  Google Scholar 

  24. ElBatal FH, Marzouk SY, Nada N, Desouky SM (2007) Gamma-ray interaction with copper-doped bismuth–borate glasses. Physica B 391(1):88–97. https://doi.org/10.1016/j.physb.2006.09.001

    Article  CAS  Google Scholar 

  25. ElBatal FH, Marzouk MA, Abdel Ghany AM (2011) Gamma rays interaction with bismuth borate glasses doped by transition metal ions. J Mater Sci 46(15):5140–5152. https://doi.org/10.1007/s10853-011-5445-4

    Article  CAS  Google Scholar 

  26. El-Batal HAR, Ezz-El-Din FM (1993) Interaction of γ-rays with some alkali-alkaline-earth borate glasses containing chromium. J Am Ceram Soc 76(2):523–529. https://doi.org/10.1111/j.1151-2916.1993.tb03817.x

    Article  CAS  Google Scholar 

  27. Doty FP, Bauer CA, Skulan AJ, Grant PG, Allendorf MD (2009) Scintillating metal-organic frameworks: a new class of radiation detection materials. Adv Mater 21(1):95–101. https://doi.org/10.1002/adma.200801753

    Article  CAS  Google Scholar 

  28. Mathis Ii SR, Golafale ST, Bacsa J, Steiner A, Ingram CW, Doty FP et al (2017) Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics. Dalton Trans 46(2):491–500. https://doi.org/10.1039/C6DT03755K

    Article  CAS  PubMed  Google Scholar 

  29. Aly SA, Elganzory HH, Mahross MH, Abdalla EM (2021) Quantum chemical studies and effect of gamma irradiation on the spectral, thermal, X-ray diffraction and DNA interaction with Pd (II), Cu(I), and Cd (II) of hydrazone derivatives. Appl Organomet Chem 35(4):e6153. https://doi.org/10.1002/aoc.6153

    Article  CAS  Google Scholar 

  30. Wang T, Reckmeier CJ, Lu S, Li Y, Cheng Y, Liao F et al (2016) Gamma ray shifted and enhanced photoluminescence of graphene quantum dots. J Mater Chem C 4(44):10538–10544. https://doi.org/10.1039/C6TC03100E

    Article  CAS  Google Scholar 

  31. Ma C, Liu H, Wolterbeek HT, Denkova AG, Serra Crespo P (2022) Effects of high gamma doses on the structural stability of metal-organic frameworks. Langmuir 38(29):8928–8933. https://doi.org/10.1021/acs.langmuir.2c01074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baruah JB (2021) Naphthalenedicarboxylate based metal organic frameworks: multifaceted material. Coord Chem Rev 437:213862. https://doi.org/10.1016/j.ccr.2021.213862

    Article  CAS  Google Scholar 

  33. Yan B (2017) Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc Chem Res 50(11):2789–2798. https://doi.org/10.1021/acs.accounts.7b00387

    Article  CAS  PubMed  Google Scholar 

  34. Safinejad M, Rigi A, Zeraati M, Heidary Z, Jahani S, Chauhan NPS et al (2022) Lanthanum-based metal organic framework (La-MOF) use of 3,4-dihydroxycinnamic acid as drug delivery system linkers in human breast cancer therapy. BMC Chem 16(1):93. https://doi.org/10.1186/s13065-022-00886-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y-H, Chien P-H (2014) A series of lanthanide–organic frameworks possessing arrays of 2D intersecting channels within a 3D pillar-supported packed double-decker network and Co2+-induced luminescence modulation. CrystEngComm 16(37):8852–8862. https://doi.org/10.1039/C4CE00461B

    Article  CAS  Google Scholar 

  36. Al Lafi AG, Assfour B, Assaad T (2021) Spectroscopic investigations of gamma-ray irradiation effects on metal organic framework. J Mater Sci 56(21):12154–12170. https://doi.org/10.1007/s10853-021-06051-5

    Article  CAS  Google Scholar 

  37. Valverde-González A, Pintado-Sierra M, Rasero-Almansa A, Sánchez F, Iglesias M (2021) Amino-functionalized zirconium and cerium MOFs: catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines. Appl Catal A 623:118287. https://doi.org/10.1016/j.apcata.2021.118287

    Article  CAS  Google Scholar 

  38. Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM et al (2021) Power of infrared and raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem Rev 121(3):1286–1424. https://doi.org/10.1021/acs.chemrev.0c00487

    Article  CAS  PubMed  Google Scholar 

  39. Bonino F, Chavan S, Vitillo JG, Groppo E, Agostini G, Lamberti C et al (2008) Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO. Chem Mater 20(15):4957–4968. https://doi.org/10.1021/cm800686k

    Article  CAS  Google Scholar 

  40. Krylov A, Vtyurin A, Petkov P, Senkovska I, Maliuta M, Bon V et al (2017) Raman spectroscopy studies of the terahertz vibrational modes of a DUT-8 (Ni) metal–organic framework. Phys Chem Chem Phys 19(47):32099–32104. https://doi.org/10.1039/C7CP06225G

    Article  CAS  PubMed  Google Scholar 

  41. Uwamino Y, Ishizuka T, Yamatera H (1984) X-ray photoelectron spectroscopy of rare-earth compounds. J Electron Spectrosc Relat Phenom 34(1):67–78. https://doi.org/10.1016/0368-2048(84)80060-2

    Article  CAS  Google Scholar 

  42. Chen F-H, Her J-L, Shao Y-H, Matsuda YH, Pan T-M (2013) Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors. Nanoscale Res Lett 8(1):18. https://doi.org/10.1186/1556-276X-8-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Unikoth M, Varghese G, Shijina K (2017) Room temperature AC impedance and dielectric studies of Bi and Sr doped PrCo0.6Fe0.4O3 perovskites. Process Appl Ceram 11:52–59. https://doi.org/10.2298/PAC1701052M

    Article  Google Scholar 

  44. Huynh TV, Anh NTN, Darmanto W, Doong R-A (2021) Erbium-doped graphene quantum dots with up- and down-conversion luminescence for effective detection of ferric ions in water and human serum. Sens Actuators, B Chem 328:129056. https://doi.org/10.1016/j.snb.2020.129056

    Article  CAS  Google Scholar 

  45. Arul P, Nandhini C, Huang S-T, Gowthaman NSK (2023) Development of water-dispersible Dy(III)-based organic framework as a fluorescent and electrochemical probe for quantitative detection of tannic acid in real alcoholic and fruit beverages. Anal Chim Acta 1274:341582. https://doi.org/10.1016/j.aca.2023.341582

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Li M, Yang S, Yang Y, Nie J, Xue Y et al (2022) High-performance scavenging of Nd (III) and Sm (III) from water by a copper-based metal-organic framework HKUST-1. J Chem Sci 134(3):68. https://doi.org/10.1007/s12039-022-02062-0

    Article  Google Scholar 

  47. Chang H, Yao S, Kang X, Zhang X, Ma N, Zhang M et al (2020) Flexible, transparent, and hazy cellulose nanopaper with efficient near-infrared luminescence fabricated by 2D lanthanide (Ln = Nd, Yb, or Er) metal–organic-framework-grafted oxidized cellulose nanofibrils. Inorg Chem 59(22):16611–16621. https://doi.org/10.1021/acs.inorgchem.0c02518

    Article  CAS  PubMed  Google Scholar 

  48. Jiang N, Zhou X, Jiang Y-F, Zhao Z-W, Ma L-B, Shen C-C et al (2018) Oxygen deficient Pr6O11 nanorod supported palladium nanoparticles: highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions. RSC Adv 8(31):17504–17510. https://doi.org/10.1039/C8RA02831A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramana EV, Prasad NV, Tobaldi DM, Zavašnik J, Singh MK, Hortigüela MJ et al (2017) Effect of samarium and vanadium co-doping on structure, ferroelectric and photocatalytic properties of bismuth titanate. RSC Adv 7(16):9680–9692. https://doi.org/10.1039/C7RA00021A

    Article  CAS  Google Scholar 

  50. Decadt R, Van Hecke K, Depla D, Leus K, Weinberger D, Van Driessche I et al (2012) Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg Chem 51(21):11623–11634. https://doi.org/10.1021/ic301544q

    Article  CAS  PubMed  Google Scholar 

  51. Bolton J (2021) New NIR emission from Sm3+ in Yb3+-Sm3+ co-doped tellurite glass. J Lumin 231:117717. https://doi.org/10.1016/j.jlumin.2020.117717

    Article  CAS  Google Scholar 

  52. Selvaraju K, Marimuthu K (2013) Structural and spectroscopic studies on concentration dependent Sm3+ doped boro-tellurite glasses. J Alloy Compd 553:273–281. https://doi.org/10.1016/j.jallcom.2012.11.150

    Article  CAS  Google Scholar 

  53. Jose A, Gopi S, Krishnapriya T, Jose TA, Joseph C, Unnikrishnan NV et al (2021) Spectroscopic investigations on 1.53 μm NIR emission of Er3+ doped multicomponent borosilicate glasses for telecommunication and lasing applications. Mater Chem Phys 261:124223. https://doi.org/10.1016/j.matchemphys.2021.124223

    Article  CAS  Google Scholar 

  54. Martins R, Barquinha P, Pimentel A, Pereira L, Fortunato E (2005) Transport in high mobility amorphous wide band gap indium zinc oxide films. Phys Status Solidi A 202(9):R95–R97. https://doi.org/10.1002/pssa.200521020

    Article  CAS  Google Scholar 

  55. Carnall WT, Fields PR, Rajnak K (2003) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49(10):4424–4442. https://doi.org/10.1063/1.1669893

    Article  Google Scholar 

  56. Maouche R, Belaid S, Benmerad B, Bouacida S, Daiguebonne C, Suffren Y et al (2021) A new praseodymium-based coordination polymers with 1,10-phenantroline and glutarate ligands: synthesis, crystal structure and luminescent properties. J Mol Struct 1225:129164. https://doi.org/10.1016/j.molstruc.2020.129164

    Article  CAS  Google Scholar 

  57. Runowski M, Woźny P, Martín IR, Lavín V, Lis S (2019) Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) – Studies in visible and NIR range. J Lumin 214:116571. https://doi.org/10.1016/j.jlumin.2019.116571

    Article  CAS  Google Scholar 

  58. Chen L, Zhang H, Pan M, Wei Z-W, Wang H-P, Fan Y-N et al (2016) An efficient visible and near-infrared (NIR) emitting smiii metal-organic framework (Sm-MOF) sensitized by excited-state intramolecular proton transfer (ESIPT) ligand. Chem Asian J 11(12):1765–1769. https://doi.org/10.1002/asia.201600330

    Article  CAS  PubMed  Google Scholar 

  59. Sun L, Qiu Y, Liu T, Peng H, Deng W, Wang Z et al (2013) Visible-light sensitized sol–gel-based lanthanide complexes (Sm, Yb, Nd, Er, Pr, Ho, Tm): microstructure, photoluminescence study, and thermostability. RSC Adv 3(48):26367–26375. https://doi.org/10.1039/C3RA45202F

    Article  CAS  Google Scholar 

  60. Cavalli E (2019) (INVITED) Optical spectroscopy of Dy3+ in crystalline hosts: general aspects, personal considerations and some news. Opt Mater X 1:100014. https://doi.org/10.1016/j.omx.2019.100014

    Article  CAS  Google Scholar 

  61. Samanta T, Praveen AE, Mahalingam V (2018) Host sensitized intense infrared emissions from Ln3+ doped GdVO4 nanocrystals: ranging from 950 nm to 2000 nm. J Mater Chem C 6(18):4878–4886. https://doi.org/10.1039/C8TC00841H

    Article  CAS  Google Scholar 

  62. Chemingui S, Ferhi M, Horchani-Naifer K, Férid M (2015) Synthesis and luminescence characteristics of Dy3+ doped KLa(PO3)4. J Lumin 166:82–87. https://doi.org/10.1016/j.jlumin.2015.05.018

    Article  CAS  Google Scholar 

  63. Wang J, Suffren Y, Daiguebonne C, Freslon S, Bernot K, Calvez G et al (2019) Multi-emissive lanthanide-based coordination polymers for potential application as luminescent bar-codes. Inorg Chem 58(4):2659–2668. https://doi.org/10.1021/acs.inorgchem.8b03277

    Article  PubMed  Google Scholar 

  64. Ding Y, Zhao G, Chen J, Dong Q, Nakai Y, Tsuboi T (2011) Near-infrared emission bands of Er3+-doped YAP and LSO crystals. J Lumin 131(8):1577–1583. https://doi.org/10.1016/j.jlumin.2011.03.063

    Article  CAS  Google Scholar 

  65. Venkata Krishnaiah K, Marques-Hueso J, Suresh K, Venkataiah G, Richards BS, Jayasankar CK (2016) Spectroscopy and near infrared upconversion of Er3+-doped TZNT glasses. J Lumin 169:270–276. https://doi.org/10.1016/j.jlumin.2015.08.035

    Article  CAS  Google Scholar 

  66. Tiwari N, Dubey V (2016) Luminescence studies and infrared emission of erbium-doped calcium zirconate phosphor. Luminescence 31(3):837–842. https://doi.org/10.1002/bio.3039

    Article  CAS  PubMed  Google Scholar 

  67. Abdallah A, Freslon S, Fan X, Rojo A, Daiguebonne C, Suffren Y et al (2019) Lanthanide-based coordination polymers with 1,4-carboxyphenylboronic ligand: multiemissive compounds for multisensitive luminescent thermometric probes. Inorg Chem 58(1):462–475. https://doi.org/10.1021/acs.inorgchem.8b02681

    Article  CAS  PubMed  Google Scholar 

  68. Görling C, Leinhos U, Mann K (2003) Self-trapped exciton luminescence and repetition rate dependence of two-photon absorption in CaF2 at 193 nm. Opt Commun 216(4):369–378. https://doi.org/10.1016/S0030-4018(02)02344-1

    Article  CAS  Google Scholar 

  69. Bheeram VR, Dadhich AS, Nagumantri R, Rentala S, Saha A, Mukkamala SB (2019) Gamma ray enhanced Vis-NIR photoluminescence and cytotoxicity of biocompatible silica coated Nd3+ doped GdPO4 nanophosphors. Nucl Instrum Methods Phys Res Sect B 440:11–18. https://doi.org/10.1016/j.nimb.2018.11.043

    Article  CAS  Google Scholar 

  70. Volkringer C, Falaise C, Devaux P, Giovine R, Stevenson V, Pourpoint F et al (2016) Stability of metal–organic frameworks under gamma irradiation. Chem Commun 52(84):12502–12505. https://doi.org/10.1039/C6CC06878B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the UGC-DAE-CSR, Kolkata center for their enormous financial support (Project No. UGC-DAE-CSR-KC/CRS/19/RC20/098, Govt. of India and GITAM (Deemed to be University) for the research facilities, Visakhapatnam, India.

Funding

This work is supported by UGC-DAE Consortium for Scientific Research, Kolkata centre, India, Grant number: UGC-DAE-CSR-KC/CRS/19/RC20/098.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Podilapu Atchutha Rao: Conceptualization; Material preparation, data collection and analysis, Writing—review & editing of the manuscript; Dr. Harihara Padhy: Conceptualization; Methodology; Investigation; Resources; Supervision; and Writing—review & editing of the manuscript; Mr. Krishanu Bandyopadhyay: Material preparation, data collection and analysis; Mr. Adapaka Venkateswara Rao: Material preparation, data collection and analysis; Ms. Bhavani Kundrapu: Material preparation, data collection and analysis; Dr. Ravikumar Ganta: Material preparation, data collection and analysis; Dr. Samatha Bevara Material preparation, data collection and analysis; Dr. Bheeshma Pratap Singh: Material preparation, data collection and analysis; Dr. Satyen Saha: Conceptualization; Validation; and Writing—review & editing; Dr. Ramarao Malla: Conceptualization; Validation; and Writing—review & editing; Dr. Saratchandra Babu Mukkamala: Funding acquisition; Project administration; Investigation; Resources; Supervision; Writing—review & editing of the manuscript.

Corresponding authors

Correspondence to Harihara Padhy or Saratchandra Babu Mukkamala.

Ethics declarations

Ethics Approval

There are no ethical approvals required for this research work.

Consent to Participate

Not applicable.

Consent for Publication

All the authors are agreed to publishing the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16585 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.A., Padhy, H., Bandyopadhyay, K. et al. Exploring the Gamma-Ray Enhanced NIR-Luminescence and Cytotoxic Potential of Lanthanide-Naphthalene Dicarboxylate based Metal–Organic Frameworks. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03677-x

Keywords

Navigation