Skip to main content
Log in

An all-inorganic lead-free metal halide double perovskite for the highly selective detection of norfloxacin in aqueous solution

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Lead-based perovskites are highly susceptible to environmental influences, and their application in analytical chemistry, especially in aqueous solution, has been reported rarely. All-inorganic lead-free metal halide perovskites have been considered as a substitute for lead-based perovskites. Herein, a Cs2RbTbCl6 perovskite microcrystal (PMCs), which emits strong yellow-green fluorescence with a maximum emission wavelength at 547 nm, was for the first time  synthesized and characterized. The Cs2RbTbCl6 PMCs could be well dispersed in N,N-dimethylacetamide (DMF), and its fluorescence could be significantly enhanced by the addition of norfloxacin (NOR) in the aqueous solution. We found that the Cs2RbTbCl6 PMCs can be used as fluorescent probes (excitation, 365 nm; emission, 547 nm) to selectively detect NOR in a concentration range from 10.0 to 200.0 μM with the limit of detection (LOD) being 0.04 μM. The Cs2RbTbCl6 PMCs could also be adsorbed on filter paper to fabricate as a fluorescent test paper for visual detection of NOR under 365-nm ultraviolet (UV) lamp irradiation. The proposed method has the potential to establish a new analytical method to visualize the detection of NOR in aqueous environments and also promotes the application of all-inorganic lead-free perovskites for analytical detection in aqueous environments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manser JS, Christians JA, Kamat PV (2016) Intriguing optoelectronic properties of metal halide perovskites. Chem Rev 116(21):12956–13008

    Article  CAS  PubMed  Google Scholar 

  2. Mehrzad-Samarin M, Faridbod F, Dezfuli AS, Ganjali MR (2017) A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosens Bioelectron 92:618–623

    Article  CAS  PubMed  Google Scholar 

  3. Liang S, Zhang M, Biesold GM, Choi W, He Y, Li Z et al (2021) Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv Mater 33(50):2005888

  4. Liu B, Wang G, Lu Y, Wang W, Liu Z, Li J (2022) Zinc borosilicate glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots for photoluminescence lighting and display applications ACS Applied Nano Materials 5(7):9503–9513

  5. Fu Y-B, Wen Q-L, Ding H-T, Yang N, Chai X-Y, Zhang Y et al (2022) Green and simple synthesis of NH2-functionalized CsPbBr3 perovskite nanocrystals for detection of iodide ion. Microchem J 182:107892

    Article  CAS  Google Scholar 

  6. Furgal CM, Boyd AD, Mayeda AM, Jardine CG, Driedger SM (2023) Risk communication and perceptions about lead ammunition and Inuit health in Nunavik, Canada. Int J Circumpolar Health 82(1): 2218014

  7. Singh H, Bamrah A, Bhardwaj SK, Deep A, Khatri M, Kim KH et al (2021) Nanomaterial-based fluorescent sensors for the detection of lead ions. J Hazard Mater 407:124379

    Article  CAS  PubMed  Google Scholar 

  8. Li HG, Zhu YM, Liu XL, Guo ZY, Huang YN, Chen X (2023) Colorimetric sensing of hydrogen peroxide based on the wavelength-shift of CsPbBr 3 perovskite nanocrystals on water–oil interface. J Anal Test 7(1):1–7

    Article  Google Scholar 

  9. Zhang W, Liu H, Yan F, Dong B, Wang H-L (2023) Recent progress of low-toxicity poor-lead all-inorganic perovskite solar cells. Small Methods. 2300421. https://doi.org/10.1002/smtd.202300421

  10. Ahmed S, Jannat F, Khan MAK, Alim MA (2021) Numerical development of eco-friendly Cs2TiBr 6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 225:165765

    Article  ADS  CAS  Google Scholar 

  11. Han P, Luo C, Yang S, Yang Y, Deng W, Han K (2020) All-inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from < 2 % to 90 %. Angew Chem Int Ed 59(31):12709–12713

    Article  CAS  Google Scholar 

  12. He Y, Zhou Y, Wang Q, Hao Q, Guo X, Li S (2023) Design and performance exploration of a lead-free all-inorganic hydrogenated Cs2AgBiBr 6-based double perovskite solar cell: a numerical modeling study. Solar Rrl 7(10):2300030

    Article  CAS  Google Scholar 

  13. Kumar A, Singh S, Mohammed MKA (2022) Numerical investigation of single junction environmental friendly double perovskite (Cs2AuBiCl6) solar cell with 20.5% power conversion efficiency and negligible hysteresis. Int J Energy Res 46(14):20180–93

    Article  CAS  Google Scholar 

  14. Wolf NR, Connor BA, Slavney AH, Karunadasa HI (2021) Doubling the stakes: the promise of halide double perovskites. Angew Chem Int Ed 60(30):16264–16278

    Article  CAS  Google Scholar 

  15. Guo K, Lin P, Wu D, Shi Z, Chen X, Han Y, et al (2023) Cs2AgBiCl6: a novel, high-efficient and stable visible-light photocatalyst for degradation of organic dyes. Chem Eur J 29 (35):e202300400

  16. Pang B, Chen X, Bao F, Liu Y, Feng T, Dong H, et al. Improved charge extraction and atmospheric stability of all-inorganic Cs2AgBiBr6 perovskite solar cells by MoS2 nanoflakes Sol Energy Mater Sol Cells 2022; 246

  17. Lai Z, Meng Y, Wang F, Bu X, Chen D, Xie P et al (2022) PDMS-assisted low-temperature synthesis of submillimeter all-inorganic halide perovskite microcrystals for high-performance photodetectors. Adv Opt Mater 10(20):2201127

  18. Rao Z, Li Q, Li Z, Zhou L, Zhao X, Gong X (2022) Ultra-high-sensitive temperature sensing based on er(3+)and yb3+co-doped lead-free double perovskite microcrystals. J Phys Chem Lett 13(16):3623–3630

    Article  CAS  PubMed  Google Scholar 

  19. Zuo T, Qi F, Yam C, Jiang S, Yang M, Zhong M-L et al (2022) Theoretical insight into optoelectronic properties of all-inorganic copper-based perovskite derivatives Cs2CuXCl6 (X = As, Sb, and Bi). Russ J Phys Chem A 96(14):3179–3185

    Article  CAS  Google Scholar 

  20. Darwish IA, Sultan MA, Al-Arfaj HA (2009) Novel selective kinetic spectrophotometric method for determination of norfloxacin in its pharmaceutical formulations. Talanta 78(4–5):1383–1388

    Article  CAS  PubMed  Google Scholar 

  21. Li G, Zha J, Niu M, Hu F, Hui X, Tang T et al (2018) Bifunctional monomer molecularly imprinted sol-gel polymers based on the surface of magnetic halloysite nanotubes as an effective extraction approach for norfloxacin. Appl Clay Sci 162:409–417

    Article  CAS  Google Scholar 

  22. Urraca JL, Castellari M, Barrios CA, Moreno-Bondi MC (2014) Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography. J Chromatogr A 1343:1–9

    Article  CAS  PubMed  Google Scholar 

  23. Babic S, Perisa M, Skoric I (2013) Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91(11):1635–1642

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Watkinson AJ, Murby EJ, Costanzo SD (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 41(18):4164–4176

    Article  CAS  PubMed  Google Scholar 

  25. Pichard L, Fabre I, Fabre G, Domergue J, Saintaubert B, Mourad G et al (1990) Cyclosporine-A drug-interactions - screening for inducers and inhibitors of cytochrome-P-450 (cyclosporine-A oxidase) in primary cultures of human hepatocytes and in liver-microsomes. Drug Metab Dispos 18(5):595–606

    CAS  PubMed  Google Scholar 

  26. Fick J, Soederstrom H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28(12):2522–2527

    Article  CAS  PubMed  Google Scholar 

  27. der Beek TA, Weber F-A, Bergmann A, Hickmann S, Ebert I, Hein A et al (2016) Pharmaceuticals in the environment-global occurrences and perspectives. Environ Toxicol Chem 35(4):823–835

    Article  Google Scholar 

  28. Ren YH, Zhou GM, Wu J (2009) Yu DN Study on the interaction of DNA and norfloxacin by FT-Raman. Spectrosc Spectr Anal 29(11):2980–3

    CAS  Google Scholar 

  29. Kou J, Wang G, Wang J, Zhou L (2010) RP-HPLC determination of the content of norfloxacin and dexamethasone sodium phosphate in compound norfloxacin ophthalmic solutions and its relative substance. Chin J Antibiot 35(8):593–5

    CAS  Google Scholar 

  30. Zhang R, Liu X, Yu L (2016) Preparation of cyclodextrin modified molecularly imprinted photonic crystal for detecting of norfloxacin. Chem Ind Eng 33(3):39–44

    Google Scholar 

  31. Su C, Kang Y, Deng B (2006) Determination of norfloxacin by capillary electrophoresis with an end-column electrochemiluminescence detection. Chin J Anal Chem 34:S135–S137

    CAS  Google Scholar 

  32. Deng B, Su C, Kang Y (2006) Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection. Anal Bioanal Chem 385(7):1336–1341

    Article  CAS  PubMed  Google Scholar 

  33. Yang N, Wen QL, Fu YB, Long LF, Liao YJ, Hou SB, et al. (2022) A lead-free Cs2ZnCl4 perovskite nanocrystals fluorescent probe for highly selective detection of norfloxacin Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 281:121568

  34. Wang S, Bao X, Gao B, Li M (2019) A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch.” Dalton Trans 48(23):8288–8296

    Article  CAS  PubMed  Google Scholar 

  35. Rani A, Pan S-Y, Chang C-T (2023) Carboxylic acid f-MWCNT/graphite and safranin O/graphite based voltammetric sensors for norfloxacin detection. Electroanalysis 35(1):158–165

    Article  Google Scholar 

  36. Chaiyasing K, Liawruangrath B, Natakankitkul S, Satienperakul S, Rannurags N, Norfun P et al (2018) Sequential injection analysis for the determination of fluoroquinolone antibacterial drug residues by using eosin Y as complexing agent. Spectrochim Acta-A: Mol Biomol Spectrosc 202:107–114

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Argekar AP, Kapadia SU, Raj SV (1996) Simultaneous determination of norfloxacin and tinidazole in tablets by reverse phase high performance liquid chromatography (RP - HPLC). Anal Lett 29(9):1539–1549

    Article  CAS  Google Scholar 

  38. Wu S, Chen C, Chen J, Li W, Sun M, Zhuang J et al (2022) Construction of carbon dots/metal-organic framework composite for ratiometric sensing of norfloxacin. J Mater Chem C 10(41):15508–15515

    Article  CAS  Google Scholar 

  39. Lai ZZ, Yang X, Qin L, An JL, Wang Z, Sun X, et al. (2021) Synthesis, dye adsorption, and fluorescence sensing of antibiotics of a zinc-based coordination polymer. J Solid State Chem 300:122278

Download references

Acknowledgements

Thanks to the Advanced Analysis and Measurement Center of Yunnan University for providing a sample testing service.

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 21565030, 22164020), the Program for Excellent Young Talents of Yunnan University, and the Foundation of National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University).

National Natural Science Foundation of China,21565030,Jian Ling,22164020,Qiue Cao

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Ling or Qiue Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1451 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HC., Yang, N., She, WZ. et al. An all-inorganic lead-free metal halide double perovskite for the highly selective detection of norfloxacin in aqueous solution. Microchim Acta 191, 125 (2024). https://doi.org/10.1007/s00604-024-06198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06198-3

Keywords

Navigation