Skip to main content
Log in

pH-Sensitive and Lysosome Targetable Photosensitizers Based on BODIPYs

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is an effective and U.S. Food and Drug Administration (FDA) approved treatment for cancer and other diseases. Photosensitizer is one of the three key components that harvest the energy of light at a certain wavelength. Compared to the conventional fluorophores used as photosensitizers, boron dipyrromethene (BODIPY) derivatives have grown fast in recent years due to their low dark toxicity, versatile tunable sites, and easiness of being paired with other treatments. In this paper, two pH-sensitive BODIPY-based photosensitizers (BDC and BDBrC) were synthesized by adding carbazole moieties onto the BODIPY cores (BD and BDBr) through condensation reactions. BDBrC has two Br atoms at the BODIPY core that promote singlet oxygen generation and further red-shift the absorption maximum peak. Both compounds showed sensitivity toward pH change and generated more singlet oxygen under acidic conditions. The cellular uptake and cell imaging experiments showed that BDBrC can selectively target the lysosome organelle. The further dark cell viability and light cytotoxicity indicate the light triggered PDT treatment can be accomplished with BDBrC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Our manuscript has data included as electronic supplementary materials.

References

  1. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  PubMed  CAS  Google Scholar 

  2. Pham TC, Nguyen V, Choi Y, Lee S, Yoon J (2021) Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem Rev 121:13454–13619

    Article  PubMed  CAS  Google Scholar 

  3. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: A link between cancer genetics and chemotherapy. Cell 108:153–164

    Article  PubMed  CAS  Google Scholar 

  4. Gunayadin G, Gedik ME, Ayan S (2021) Photodynamic therapy for the treatment and diagnosis of cancer – a review of the current clinical status. Front Chem 9:686303

    Article  Google Scholar 

  5. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: An update. CA Cancer J Clin 61:250–281

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li M, Xia J, Tian R, Wang J, Fan J, Du J, Long S, Song X, Foley JW, Peng X (2018) Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors. J Am Chem Soc 140:14851–14859

    Article  PubMed  CAS  Google Scholar 

  7. Cruess AF, Zlateva G, Pleil AM, Wirostko B (2009) Photodynamic therapy with verteporfin in age-related macular degeneration: a systematic review of efficacy, safety, treatment modifications and pharmacoeconomic properties. Acta Ophthalmol 87:118–132

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Lovell JF, Yoon Y, Chen X (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17:657–674

    Article  PubMed  Google Scholar 

  9. Turksoy A, Yildiz D, Akkaya EU (2019) Photosensitization and controlled photosensitization with BODIPY dyes. Coord Chem Rev 379:47–64

    Article  CAS  Google Scholar 

  10. Bassan E, Gualandi A, Cozzi PG, Ceroni P (2021) Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chem Sci 12:6607–6628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88

    Article  PubMed  CAS  Google Scholar 

  12. Hinkeldey B, Schmitt A, Jung G (2008) Comparative photostability studies of BODIPY and fluorescein dyes by using fluorescence correlation spectroscopy. ChemPhysChem 9:2019–2027

    Article  PubMed  CAS  Google Scholar 

  13. Agazzi ML, Ballatore MB, Durantini AM, Durantini EN, Tomé AC (2019) BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. J Photochem Photobiol C: Photochem Rev 40:21–48

    Article  CAS  Google Scholar 

  14. Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T (2005) Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore. J Am Chem Soc 127:12162–12163

    Article  PubMed  CAS  Google Scholar 

  15. Turan IS, Cakmak FP, Yildirim DC, Cetin-Atalay R, Akkaya EU (2014) Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action. Chem – A Eur J 20:16088–16092

    Article  CAS  Google Scholar 

  16. Zou J, Yin Z, Ding K, Tang Q, Li J, Si W, Shao J, Zhang Q, Huang W, Dong X (2017) BODIPY Derivatives for Photodynamic Therapy: Influence of Configuration versus Heavy Atom Effect. ACS Appl Mater Interfaces 9:32475–32481

    Article  PubMed  CAS  Google Scholar 

  17. Xue F, Wei P, Ge X, Zhong Y, Cao C, Yu D, Yi TA (2018) pH-responsive organic photosensitizer specifically activated by cancer lysosomes. Dyes Pigm 156:285–290

    Article  CAS  Google Scholar 

  18. Li X, Lee S, Yoon J (2018) Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev 47:1174–1188

    Article  PubMed  CAS  Google Scholar 

  19. Lin W, Zhang W, Liu S, Li Z, Hu X, Xie Z, Duan C, Han G (2019) Engineering pH-responsive BODIPY nanoparticles for tumor selective multimodal imaging and phototherapy. ACS Appl Mater Interfaces 11:43928–43935

    Article  PubMed  CAS  Google Scholar 

  20. Su J, Chen F, Cryns V, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133:11850–11853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tang Q, Xiao W, Huang C, Si W, Shao J, Huang W, Chen P, Zhang Q, Dong X (2017) pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. Chem Mater 29:5216–5224

    Article  CAS  Google Scholar 

  22. Figliola C, Anton H, Sutter C, Cheriaux C, Sutter A, Mazan V, Elhabiri M, Didier P, Jacquemin D, Ulrich G (2023) Lysosomes targeting pH activable imaging-guided photodynamic agents. ChemBioChem 24:202300139

    Article  Google Scholar 

  23. Wang S, Bu Y, Liu X, Chen D, Yu Z, Zhang J, Wang L, Zhou H (2022) Molecular engineering to construct specific cancer cell lysosome targeting photosensitizer by adjusting the proton binding ability. Sens Actuators, B Chem 371:132546

    Article  CAS  Google Scholar 

  24. Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P (2019) Photosensitizers for Photodynamic Therapy. Adv Healthcare Mater 8:e1900132

    Article  Google Scholar 

  25. Kim KS, Hu J, Bae YH (2020) 6 - pH-sensitive biomaterials for cancer therapy and diagnosis. In: Park K (ed) Biomaterials for Cancer Therapeutics, 2nd edn. Woodhead Publishing Series in Biomaterials, pp 141–164. ISBN 9780081029831. https://www.sciencedirect.com/science/article/pii/B9780081029831000065

  26. Chao J, Wang H, Song K, Li Z, Zhang Y, Yin C, Huo F, Wang J, Zhang T (2016) A highly sensitive acidic pH fluorescent probe and its application to E. coli cells. Tetrahedron 72:8342–8349

    Article  CAS  Google Scholar 

  27. Sambath K, Zhao T, Wan Z, Zhang Y (2019) Photo-uncaging of BODIPY oxime ester for histone descetylases induced apoptosis in tumor cells. Chem Commun 55:14162–14165

    Article  CAS  Google Scholar 

  28. Sambath K, Wan Z, Wang Q, Chen H, Zhang Y (2020) BODIPY-based photoacid generators for light-induced cationic polymerization. Org Lett 22:1208–1212

    Article  PubMed  CAS  Google Scholar 

  29. Huang L, Li Z, Zhao Y, Zhang Y, Wu S, Zhao J, Han G (2016) Ultralow-power near infrared lamp light operable targeted organic nanoparticle photodynamic therapy. J Am Chem Soc 138:14586–14591

    Article  PubMed  CAS  Google Scholar 

  30. Huang L, Li Z, Zhao Y, Yang J, Yang Y, Pendharkar AI, Zhang Y, Kelmar S, Chen L, Wu W, Zhao J, Han G (2017) Enhancing photodynamic therapy through resonance energy transfer constructed near-infrared photosensitized nanoparticles. Adv Mater 29:1604789

    Article  Google Scholar 

  31. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  PubMed  CAS  Google Scholar 

  32. He H, Lo PC, Yeung SL, Fong WP, Ng DKP (2011) Preparation of unsymmetrical distyryl BODIPY derivatives and effects of the styryl substituents on their in vitro photodynamic properties. Chem Commun 47:4748–4750

    Article  CAS  Google Scholar 

  33. Zhao J, Wu W, Sun J, Guo S (2013) Triplet photosensitizers: from molecular design to applications. Chem Soc Rev 42:5323–5351

    Article  PubMed  CAS  Google Scholar 

  34. Yu S, Reddy O, Abaci A, Ai Y, Li Y, Chen H, Guvendiren M, Belfield KD, Zhang Y (2023) Novel BODIPY-based photobase generators for photoinduced polymerization. ACS Appl Mater Interfaces 15:45281–45289

    Article  PubMed  CAS  Google Scholar 

  35. Zhu H, Fan J, Xu Q, Li H, Wang J, Gao P, Peng X (2012) Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem Commun 48:11766–11768

    Article  CAS  Google Scholar 

  36. Li SS, Zhang M, Wang JH, Yang F, Kang B, Xu JJ, Chen HY (2019) Monitoring the changes of pH in lysosomes during autophagy and apoptosis by plasmon enhanced raman imaging. Anal Chem 91:8398–8405

    Article  PubMed  CAS  Google Scholar 

  37. Borah J, Rahman A, Baruah A, Dutta P, Khakhlary P (2023) 8-hydroxyquinoline-BODIPY based dual mode pH probe: intuits acidic and basic environments through two different mechanisms. J Photochem Photobiol A: Chem 437:114423

    Article  CAS  Google Scholar 

  38. Entradas T, Waldron S, Volk M (2020) The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J Photochem Photobiol B: Biol 204:111787

    Article  CAS  Google Scholar 

  39. Wang X, Nguyen D, Yanez CO, Rodriguez L, Ahn HY, Bondar MV (2010) Belfield, K. D. High-fidelity hydrophilic probe for two-photon fluorescence lysosomal imaging. J Am Chem Soc 132:12237–12239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yu J, Wang H, Dai X, Chen Y, Liu Y (2022) Multivalent supramolecular assembly based on a triphenylamine derivative for near-infrared lysosome targeted imaging. ACS Appl Mater Interfaces 14:4417–4422

    Article  PubMed  CAS  Google Scholar 

  41. Deng Y, Long Y, Song A, Wang H, Xiang S, Qiu S, Ge X, Golberg D, Weng Q (2023) Boron dopants in red-emitting B and N co-doped carbon quantum dots enable targeted imaging of lysososmes. ACS Appl Mater Interfaces 15:17045–17053

    Article  PubMed  CAS  Google Scholar 

  42. Goncalves RCR, Belmonte-Reche E, Pina J, da Silva MC, Pinto SCS, Gallo J, Costa SPG, Raposo MMM (2022) Bioimaging of lysosomes with a BODIPY pH-dependent fluorescent probe. Molecules 27:8065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li M, Tian R, Fan J, Du J, Long S, Peng X (2017) A lysosome-targeted BODIPY as potential NIR photosensitizer for photodynamic therapy. Dyes Pigm 147:99–105

    Article  CAS  Google Scholar 

  44. Malacarne MC, Gariboldi MB, Caruso E (2022) BODIPYs in PDT: a journey through the most interesting molecules produced in the last 10 years. Int J Mol Sci 23:10198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang R, Li X, Yoon Y (2021) Organelle-targeted photosensitizers for precision photodynamic therapy. ACS Appl Mater Interfaces 13:19543–19571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the support from the Department of Chemistry and Environmental Science at New Jersey Institute of Technology (NJIT).

Funding

New Jersey Health Foundation, PC 57-20.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and Y.S., investigation, methodology, and writing original draft, Y.Z., supervision, project administration, and review & editing.

Corresponding author

Correspondence to Yuanwei Zhang.

Ethics declarations

Ethical Approval

This declaration is not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 930 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yu, S. & Zhang, Y. pH-Sensitive and Lysosome Targetable Photosensitizers Based on BODIPYs. J Fluoresc (2024). https://doi.org/10.1007/s10895-023-03562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03562-z

Keywords

Navigation