Skip to main content
Log in

Influence of Annealing on the Structural, Morphological, Photoluminescence and Visible Absorption Properties of Mg Doped CuO Micro Grains

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

A Correction to this article was published on 13 March 2024

This article has been updated

Abstract

Narrow band gap oxide materials that harvest visible light have gained considerable attention for numerous visible light mediated applications. In this current work, a typical Mg doped CuO bulk material was prepared by a simple wet chemical method. The prepared material was annealed in three different temperatures viz.; 300 °C, 400 and 500 °C in air atmosphere to tune the optical band gap. XRD studies reveal that the average crystallite size increases with increase in annealing temperature. FESEM images of all the samples show their bulk nature with different grain sizes and morphologies. XPS survey scan spectra exhibit photoelectron emissions of Cu2p, O1s and Mg 1s with binding energies 933.69 eV, 533.41 eV and 1304.2 eV for all the samples and validated the effective incorporation of Mg ions into the CuO lattice. PL spectra reveal the polychromatic UV- visible luminescence bands for all the annealed samples, whereby the PL intensity is found to be decreasing as the annealing temperature increases. Finally, the band gap decreases with annealing temperature and indicates that the sample annealed at 500 °C can be exploited for visible light assisted applications such as solar cells, photocatalysis and photoelectrochemical cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Hongling Guo R, Meng G, Wang S, Wang L, Wu J, Li Z, Wang (2022) Jiabin Dong, Xiaojing Hao and Yi Zhang. Energy Environ Sci 15:693–704

    Google Scholar 

  2. Abdullah SAlshammari (2022) Ziaul RazaKhan, MohamedGandouzi, MansourMohamed, MohamedBouzidi, MohdShkir and Hamed M.Alshammari. Opt Mater 126:112146

    Google Scholar 

  3. Samriti M, Chen Z, Sun S, Prakash J (2022) Mol Syst Des Eng 7:213–238

    Article  CAS  Google Scholar 

  4. J.Samuel S, Vinita NJoslin, Ananth PMShajin, Shinu AMariappan (2022) Turibius simon, Y.Samson and C.S.Biju, Physica, vol 143. Low-dimensional Systems and Nanostructures, p 115374

  5. Maryam Sabbaghan and Behnoosh Mirzaei Behbahani, Mater Lett, 117 (214) 28–30

  6. AmalGeorge DMagimaiA, Raj X, Raj AAlbert, Irudayaraj RL, Josephine SJohn, Sundaram, Amal M, Al-Mohaimeed DAAl, Farraj (2022) Tse-Wei Chen and K.Kaviyarasu, Environmental Research, 203, 111880

  7. ElAakib H, Pierson JF, Atourki L, Nkhaili L, ElKissani A (2020) A Narjis and A Outzourhit Thin Solid Films 709:138199

    ADS  CAS  Google Scholar 

  8. JingyiMa QianWang (2021) LinliLi, XiaohangZong, HaoSun, RanTao and XiaoxingFan. J Colloid Interface Sci 602:32–42

    Google Scholar 

  9. Promod Kumar,Mohan Chandra Mathpal, Prakash J, Viljoen BC (2020) .Roos and H.C.Swart. J Alloys Compd 832:154968

    Google Scholar 

  10. Nelsa Abraham C, Unni, Philip D (2018) J Mater Sci: Mater Electron 29:21002–21013

    Google Scholar 

  11. Jeyarani WJ, Tenkyong T, Bachan N, Arun Kumar D (2016) and J. Merline Shyla, Advanced powder technology, 27, 338–346

  12. Muhammad RIslam, EbnaObaid J, ShahriyarNishat MdSaiduzzamanS (2020) T.Debnath and AlamgirKabir. J Phys Chem Solids 147:109646

    Google Scholar 

  13. MoniruzzamanJamal Md, MuktadirBillah, AshikuzzamanAyon S (2022) Ceram Int. https://doi.org/10.1016/j.ceramint.2022.11.194

    Article  Google Scholar 

  14. Gopalakrishnan R, Ashokkumar M (2021) J Mol Struct 1244:131207

    Article  CAS  Google Scholar 

  15. ChaoYang XintaiSu (2013) JideWang, XudongCao, ShoujiangWang and LuZhang. Sens Actuators B 185:159–165

    Google Scholar 

  16. Muhammad, ArifKhan (2021) NafarizalNayan, Mohd KhairulAhmad, soon ChinFhong, Mohamed SultanMohamed Ali, Mohd KamarulzakiMustafa and MuhammadTahir. Opt Mater 117:111132

    Google Scholar 

  17. Li W, Wang Y, Lin H, Shah SI, Huang CP, .Doren DJ, .Rykov SA, Chen JG (2003) And M A Barteau Applied Physics Letters 83:20

    Google Scholar 

  18. Kumar S, Sharma M, Aljawfi RN, Chae KH, Kumar R, Dalela S, Alshoaibi A, Ahmed F, Alvi PA (2020) J Electron Spectrosc Relat Phenom 240:146934

    Article  CAS  Google Scholar 

  19. Kurban H, Kurban (2021) J Non-cryst Solids 560:120726

    Article  CAS  Google Scholar 

  20. Sahaya Jude Dhas S, Suresh S, Rita A, S. A. Martin Britto Dhas, R. Gowri Shankar Rao and, Biju CS (2020) J Mater Sci: Mater Electron 31:11113–11122

  21. Janakiraman V, Tamilnayagam V, Sundararajan RS, Suresh S, Biju CS (2021) J Mater Sci: Mater Electron 32:9244–9252

    CAS  Google Scholar 

  22. Nguyen Duc Hoa, Van Quy N, Jung H, Kim D (2010) Hyojin Kim and Soon-Ku Hong. Sens Actuators B 146:266–272

    Google Scholar 

  23. Cunchong Lin H, Zhang J, Zhang, Chen C (2019) Sensors 19:51

    Google Scholar 

  24. Jung SM, Dupont O, Grange P (2001) Appl Catal A 208:393–401

    Article  CAS  Google Scholar 

  25. Zhao X, Wang P, Yan Z, Ren N (2015) Room temperature photoluminescence properties of CuO nanowire arrays. Opt Mater 42:544–547

    Article  ADS  CAS  Google Scholar 

  26. Ratheesh Kumar PM, Sudha Kartha C, Vijayakumar KP, Abe T, Kashiwaba Y, Singh F, Avasthi DK (2005) Semicond Sci Technol 20:120–126

    Article  ADS  Google Scholar 

  27. Biju CS, Suresh S, Sahaya Jude S, Dhas, Gowri Shankar R, Rao (2018) Superlattices Microstruct 120:363–369

    Article  ADS  CAS  Google Scholar 

  28. Aslani A (2011) Phys B 406:150–154

    Article  ADS  CAS  Google Scholar 

  29. Hafsa Siddiqui MR Parra and, Fozia Z, Haque (2018) Journal of Sol-Gel Science and Technology 87:125–135

  30. Sahaya Jude Dhas S, Suresh S, Rita A, Martin Britto Dhas SA, Gowri Shankar Rao R, Biju CS (2020) J Mater Sci: Mater Electron 31:11113–11122

    Google Scholar 

  31. Vimala Devi L, Selvalakshmi T, Sellaiyan S, Uedono A, Sivaji K, Sankar S (2017) J Alloys Compd 709:496–504

    Article  Google Scholar 

  32. Kuo S-Y, Chen W-C, Lai F-I, Cheng C-P, Kuo H-C, Wang S-C, Hsieh W-F (2006) J Cryst Growth 287:78–84

    Article  ADS  CAS  Google Scholar 

  33. Ganchev M, Katerski A, Stankova S, Eensalu JS, Terziysha P, Gergova R, Popkirov G, Vitanov P (2019) J Phys Conf Ser 1186:012027

    Article  CAS  Google Scholar 

  34. Janakiraman V, Tamilnayagam V, Sundararajan RS, Suresh S, Biju CS (2020) J Mater Sci Mater Electron 31:15477–15488

    Article  CAS  Google Scholar 

  35. Ansari SA, Cho MH (2016) Sci Rep 6:25405

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dharmale N, Chaudhury S, Pandey CK (2022) Phys Scr 97:055806

    Article  ADS  CAS  Google Scholar 

  37. Munawar T, Nadeem MS, Mukhtar F, Hasan M, Mahmood K, Arshad MI, Hussain A, Ali A, Saif MS, Iqbal F (2021) Mater Sci Semiconduct Process 122:105485

    Article  CAS  Google Scholar 

  38. Shabna S, Biju CS (2023) Catal Commun 177:106642

    Article  CAS  Google Scholar 

  39. Praveen Kumar M, Jagannathan R, Ravichandran S (2020) Energy Fuels 34:9030–9036

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by P. Santhosh Kumar, J. Johnson and C.S.Biju. The first draft of the manuscript was written by P. Santhosh Kumar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to J. Johnson or C. S. Biju.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.

Research Involving Human Participants and/or Animals

Not Applicable.

Informed Consent

Not Applicable.

Ethical Approval

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the author group, the order of the 2nd and 3rd authors of this article and their corresponding assigned affiliations should be corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.S., Johnson, J. & Biju, C.S. Influence of Annealing on the Structural, Morphological, Photoluminescence and Visible Absorption Properties of Mg Doped CuO Micro Grains. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03430-w

Keywords

Navigation