Skip to main content

Advertisement

Log in

Optical, structural, FTIR and photoluminescence characterization of Cu and Al doped CdS thin films by chemical bath deposition method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure CdS, Cd0.96Cu0.04S and Cd0.94Cu0.04Al0.02S thin films have been synthesized by simple chemical deposition method. Cubic structure noticed in undoped CdS and Cu-doped CdS thin films was changed into mixer of cubic and hexagonal structure for Cd0.94Cu0.04Al0.02S. The change in crystallite size, peak position and lattice parameters were discussed based on thickness, crystal structure and the density of defect states. Microstructure of the synthesized films was investigated by scanning electron microscope and energy dispersive X-ray spectra which confirmed the presence of compositional elements such as Cd, S, Cu and Al. Higher thickness and the enhanced crystallite size were responsible for the higher absorption in Cd0.96Cu0.04S than other films. The higher energy gap (2.56 eV) and enhancement of visible light absorption noticed in Cd0.96Cu0.04S thin film led them as an effective way to utilize solar energy and enhance its photocatalytic activity under visible light. The accelerated IG/IUV ratio noticed in Al, Cu co-doped CdS film was due to the formation of new energy levels related to defect states produced by Al/Cu impurities and mixer of hexagonal and cubic structure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Song, F. Zhang, X. Shen, X. Zhang, X. Zhu, B. Sun, Appl. Phys. Lett. 95, 233502 (2009)

    Article  Google Scholar 

  2. D. Shao, A. Xia, J. Hu, C. Wang, W. Yu, Colloids Surf. A 322, 61 (2008)

    Article  Google Scholar 

  3. A. Datta, S.K. Panda, S. Chaudhuri, J. Phys. Chem. C 111, 17260 (2007)

    Article  Google Scholar 

  4. Y.P.V. Subbaiah, P. Prathap, K.T. Ramakrishna Reddy, Appl. Surf. Sci. 253, 2409 (2006)

    Article  Google Scholar 

  5. L. Wang, H. Wei, Y. Fan, X. Liu, J. Zhan, Nanoscale Res. Lett. 4, 558 (2009)

    Article  Google Scholar 

  6. J. Li, H. Fan, X. Jia, J. Chen, Z. Cao, X. Chen, J. Alloys Compd. 481, 735 (2009)

    Article  Google Scholar 

  7. Y. Zhaiy, H. Fan, Q. Li, W. Yan, Appl. Surf. Sci. 258, 3232 (2012)

    Article  Google Scholar 

  8. X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, RSC Adv. 5, 23401 (2015)

    Article  Google Scholar 

  9. J. Fang, H. Fan, H. Tian, G. Dong, Mater. Charact. 108, 51 (2015)

    Article  Google Scholar 

  10. J. Fang, H. Fan, M. Li, C. Long, J. Mater. Chem. A 3, 13819 (2015)

    Article  Google Scholar 

  11. B. Geng, G. Wang, Z. Jiang, T. Xie, S. Sun, G. Meng, L. Zhang, Appl. Phys. Lett. 82, 4791 (2003)

    Article  Google Scholar 

  12. A. Khare, S. Bhushan, Eff. Defects Solids 161, 631 (2006)

    Article  Google Scholar 

  13. B.N. Patil, D.B. Nai, V.S. Shrivastava, Chalcogenide Lett. 8, 117 (2011)

    Google Scholar 

  14. S. Stolyarova, M. Weinstein, Y. Nemirovsky, J. Cryst. Growth 310, 1674 (2008)

    Article  Google Scholar 

  15. A.A. Albassan, J. Solar Energy Mater. Solar Cells 57, 323 (1999)

    Article  Google Scholar 

  16. T. Yamaguchi, Y. Yamamoto, T. Tanaka, T. Demizu, A. Yoshida, Thin Solid Films 281–282, 375 (1996)

    Article  Google Scholar 

  17. S. Jana, R. Maity, S. Das, M.K. Mitra, K.K. Chattopadhyay, Phys. E 39, 109 (2007)

    Article  Google Scholar 

  18. A. Hasnat, J. Podder, J. Sci. Res. 4, 11 (2012)

    Google Scholar 

  19. M. Muthusamy, S. Muthukumaran, M. Ashokkumar, Ceramics Inter. 40, 10657 (2014)

    Article  Google Scholar 

  20. M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 4, 191 (1989)

    Article  Google Scholar 

  21. A.A. Ziabari, F.E. Ghodsi, Growth. Sol. Energy Mater. Sol. Cells 105, 249 (2012)

    Article  Google Scholar 

  22. I. Kaur, D.K. Pandya, K.L. Chopra, J. Electrochem. Soc. 127, 943 (1980)

    Article  Google Scholar 

  23. O. Portillo-Moreno, H. Lima-Lima, V. Ramírez-Falcon, J. Martínez-Juárez, G. Juárez-Díaz, R. Lozada-Morales, B. Rebollo-Plata, R. Palomino-Merino, O. Zelaya-Angel, J. Electrochem. Soc. 153, G926 (2006)

    Article  Google Scholar 

  24. J.L. Martinez-Montes, G. Martinez, G. Torres-Delgado, O. Guzmán, O. Zelaya-Angel, R. Lozada-Morales, J. Mater. Sci. Mater. Electron. 8, 399 (1997)

    Article  Google Scholar 

  25. H.H. Afify, I.K. El Zawawi, I.K. Battisha, J. Mater. Sci. Mater. Elect. 10, 497 (1999)

    Article  Google Scholar 

  26. P. Reyes, S. Velumani, Mater. Sci. Eng. B 177, 1452 (2012)

    Article  Google Scholar 

  27. T. Abe, J. Sato, S. Ohashi, M. Watanabe, Y. Kashiwaba, Phys. Stat. Sol. B 229, 1015 (2002)

    Article  Google Scholar 

  28. R.W. Meulenberg, T. van Buren, K.M. Hanif, T.M. Willey, G.F. Strouse, L.J. Terminello, Nano Lett. 4, 2277 (2004)

    Article  Google Scholar 

  29. J. Huheey, Inorganic Chemistry, 3rd edn. (Harper and Row, New York, 1983)

    Google Scholar 

  30. D. Anbuselvan, S. Muthukumaran, Optical Mater. 42, 124 (2015)

    Article  Google Scholar 

  31. R. Sangeetha, S. Muthukumaran, M. Ashokkumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 144, 1 (2015)

    Article  Google Scholar 

  32. R. Mariappan, V. Ponnuswamy, M. Ragavendar, D. Krishnamoorthi, C. Sankar, Optik 123, 1098 (2012)

    Article  Google Scholar 

  33. S. Kose, F. Atay, V. Bilgin, I. Akyuz, E. Ketenci, Appl. Surf. Sci. 256, 4299 (2010)

    Article  Google Scholar 

  34. H. Khallaf, I.O. Oladeji, L. Chow, Thin Solid Films 516, 5967 (2008)

    Article  Google Scholar 

  35. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Zh. Zhang, J. Li, Y. Liu, J. Alloys Compd. 493, 305 (2010)

    Article  Google Scholar 

  36. A. Mondal, T.K. Chaudhuri, P. Pramanik, Solar Energy Mater. 7, 431 (1982)

    Article  Google Scholar 

  37. A.I. Oliva, O.S. Canto, R.C. Rodrigues, P. Quintana, Thin Solid Films 391, 28 (2001)

    Article  Google Scholar 

  38. M. Ashokkumar, S. Muthukumaran, Phys. E 69, 354 (2015)

    Article  Google Scholar 

  39. F. Kadirghan, D. Mao, W. Song, T. Ohono, B. Mccandless, Turk. J. Chem. 24, 21 (2000)

    Google Scholar 

  40. J. Akintunde, J. Mater. Sci. Mater. Electron. 11, 503 (2000)

    Article  Google Scholar 

  41. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, New York, 2001)

    Google Scholar 

  42. N. Chestony, T.D. Harris, R. Hull, L.E. Brus, J. Phys. Chem. 90, 3393 (1986)

    Article  Google Scholar 

  43. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006)

    Article  Google Scholar 

  44. C. Wang, H.M. Wang, Z.Y. Fang, J. Alloys Compd. 486, 702 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemathangam, S., Thanapathy, G. & Muthukumaran, S. Optical, structural, FTIR and photoluminescence characterization of Cu and Al doped CdS thin films by chemical bath deposition method. J Mater Sci: Mater Electron 27, 6800–6808 (2016). https://doi.org/10.1007/s10854-016-4630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4630-2

Keywords

Navigation