Skip to main content

Advertisement

Log in

Fabrication of a New Coumarin Based Fluorescent “turn-on” Probe for Distinct and Sequential Recognition of Al3+ and F Along With Its Application in Live Cell Imaging

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant “turn-on” emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10–9 M and 104 M−1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

All the relevant data are included in the manuscript and supplementary file.

References

  1. Chua MH, Zhou H, Zhu Q, Tang BZ, Xu JW (2021) Recent Advances in cation sensing using aggregation-induced emission. Mater Chem Front 5:659

    Article  CAS  Google Scholar 

  2. Yin J, Hu Y, Yoon J (2015) Fluorescent probes and bio-imaging: alkali metals, alkaline earth metals and pH. Chem Soc Rev 44:4619

    Article  PubMed  CAS  Google Scholar 

  3. Jeon Y, Yoon J (2012) Recent progress on fluorescent chemosensors for metal ions. Inorg Chim Acta 381:2

    Article  Google Scholar 

  4. Rurack K (2001) Flipping the light switch ‘on’ the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim Acta Part A 57:2161

    Article  CAS  Google Scholar 

  5. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensor for cation recognition. Coord Chem Rev 205:3

    Article  CAS  Google Scholar 

  6. Cao D, Liu Z, Verwilist P, Koo S, Jangjili P, Kim JS, Lin W (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem Rev 119:10403

    Article  PubMed  CAS  Google Scholar 

  7. Ko KC, Wu JS, Kim HJ, Kwon PS, Kim JW, Bartsch RA, Lee JY, Kim JS (2011) Rationally designed fluorescence ‘turn-on’ sensor for Cu2+. Chem Commun 47:3165

    Article  CAS  Google Scholar 

  8. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based spiroring opening of xanthenes and related derivatives. Chem Rev 112:1910

    Article  PubMed  CAS  Google Scholar 

  9. Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ (2001) Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform: Synthesis, Properties and Intracellular Distribution. J Am Chem Soc 123:7831

    Article  PubMed  CAS  Google Scholar 

  10. Manandhar E, Wallace KJ (2012) Host-guest chemistry of pyrene-based molecular receptors. Inorg Chim Acta 381:15

    Article  CAS  Google Scholar 

  11. Karuppannan S, Chambron JC (2011) Supramolecular chemical sensors based on pyrene monomer-excimer dual luminescence. Chem Asian J 6:964

    Article  PubMed  CAS  Google Scholar 

  12. Antina EV, Bumagina NA, V’yugin AI, Solomonov AV (2017) Fluorescent indicators of metal ions based on dipyrromethene platform. Dyes Pigm 136:368

    Article  CAS  Google Scholar 

  13. Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129:1500

    Article  PubMed  CAS  Google Scholar 

  14. Tian H, Qiao X, Zhang Z, Xie C, Li Q, Xu J (2019) A high performance 2-hydroxynaphthalene Schiff base fluorescent Chemosensor for Al3+ and its applications in imaging of living cells and zebrafish in vivo. Spectrochim Acta Part A 207:31

    Article  CAS  Google Scholar 

  15. Pramanik S, Manna SK, Sk P, Mondal D, Pal K, Mukhopadhyay S (2020) Chromogenic and fluorogenic “off-on-off” chemosensor for selective and sensitive detection of Aluminium (Al3+ and HF2- ions in solution and in living Hep G2 cells: synthesis, experimental and theoretical studies. New J Chem 44:13259

    Article  CAS  Google Scholar 

  16. Li XB, Chen JY, Wang EJ (2015) A highly selective and sensitive chemosensor for colorimetric and fluorescent detection of Al3+ and living cell imaging. Aust J Chem 68:156

    Article  CAS  Google Scholar 

  17. Wang L, Qin W, Liu W (2014) Two highly sensitive Schiff-base fluorescent indicators for the detection of Zn2+. Anal Methods 16:1167

    Article  Google Scholar 

  18. Das S, Dutta M, Das D (2013) Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects. Anal Methods 55:6262

    Article  Google Scholar 

  19. Qiao Y, Li Z, Yu MH, Chang Z, Bu XH (2021) A metal-organic framework featuring highly sensitive fluorescence sensing for Al3+ ions. Cryst Eng Comm 23:8087

    Article  CAS  Google Scholar 

  20. Xu H, Chen W, Ju L, Lu H (2021) A purine based fluorescent chemosensor for the selective and sole detection of Al3+ and its practical applications in test strips and bio-imaging. Spectrochim Acta Part A 247:119074

    Article  CAS  Google Scholar 

  21. Li Z, Chen W, Dong L, Song Y, Li R, Li Q, Qu D, Zhang H, Yang Q, Li Y (2020) A novel ratiometric and reversible fluorescent probe based on naphthalimide for the detection of Al3+ and pH with excellent selectivity. New J Chem 44:3261

    Article  CAS  Google Scholar 

  22. Anu D, Naveen P, Rajamanilandan R, Kaveri MV (2021) Development of hydrazide based fluorescence probe for detection of Al3+ ions and application in live cell image. J Photochem Photobiol A 405:112921

    Article  Google Scholar 

  23. GhoraiP PK, Karmakar P, Saha A (2020) The development of two fluorescent chemosensors for the selective detection of Zn2+ and Al3+ ions in a quinoline platform by tunning the substituents of the receptor part: elucidation of the structures of the metal-bound chemosensors and biological studies. Dalton Trans 49:4758

    Article  Google Scholar 

  24. Xie JY, Li CY, Li YF, Fu YJ, Nie SX, Tan HY (2017) A near-infrared chemosensor for determination of trivalent aluminum ions in living cells and tissues. Dyes Pigm 136:817

    Article  CAS  Google Scholar 

  25. Fasman GD (1996) Aluminum and Alzheimer’s disease: model studies. Coord Chem Rev 194:125

    Article  Google Scholar 

  26. McLachlan DRC (1995) Aluminium and the risk for alzheimer’sdisease. Environmetrics 6:233

    Article  Google Scholar 

  27. Walton JR (2007) An aluminium-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 101:1275

    Article  PubMed  CAS  Google Scholar 

  28. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology 23:761

    Article  PubMed  CAS  Google Scholar 

  29. Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeration and neurodegenerative diseases. Toxicol Sci 124:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang B, Xing W, Zhao Y, Deng X (2010) Effects of chronic aluminium exposure on memory through multiple signal transduction pathways. Environ Toxicol Pharmacol 29:308

    Article  PubMed  CAS  Google Scholar 

  31. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance. Environ Exp Bot 48:75

    Article  CAS  Google Scholar 

  32. Cronan CS, Walker WJ, Bloom PR (1986) Predicting aqueous aluminium concentrations in natural waters. Nature 324:140

    Article  CAS  Google Scholar 

  33. Tiwari K, Mishra M, Singh V (2013) A highly sensitive and selective fluorescent sensor for Al3+ ions based on thiophene-2-carboxylic acid hydrazide Schiff base. RSC Adv 3:12124

    Article  CAS  Google Scholar 

  34. Xu Y, Yang L, Wang H, Zhang Y, Yang X, Pei M, Zhang G (2020) A selective “turn on” sensor for recognizing In3+ and Zn2+ in respective systems based on imidazole[2,1-b]thiazole. J Photochem Photobiol A 391:112372

    Article  CAS  Google Scholar 

  35. Saravanan A, Shyamsivappan S, Kalagatur NK, Suresh T, Maroli N, Bhuvanesh N, Kolandaivel P, Mohan PS (2020) Application of real sample analysis and biosensing: Synthesis of new naphthyl derived chemosensor for detection of Al3+ ions. Spectrochim Acta Part A 241:118684

    Article  CAS  Google Scholar 

  36. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. ChemEng J 242:127

    CAS  Google Scholar 

  37. Zuo Z, Tang Y, Lei F, Jin R, Yin P, Li Y, Niu Q (2020) New thiophene hydrazide dual-functional chemosensor: Colorimetric sensor for Cu2+ & fluorescent sensor for Al3+. Spectrochim Acta Part A 242:118712

    Article  CAS  Google Scholar 

  38. Kumar V, Kumar A, Diwan U, Srivastava SK, Upadhyay KK (2015) Salicylideneimines as efficient dual channel emissive probes for Al3+: harnessing ESIPT and ICT processes. Sens Actuators 207:650

    Article  CAS  Google Scholar 

  39. Wang J, Pang Y (2014) A simple sensitive ESIPT on-off fluorescent sensor for selective detection of Al3+ in water. RSC Adv 4:5845

    Article  CAS  Google Scholar 

  40. Mabhai S, Dolai M, Dey SK, Maiti Choudhury S, Das B, Dey S, Jana A, Banerjee DR (2022) A naphthalene-based azo armed molecular framework for selective sensing of Al3+. New J Chem 46:6885

    Article  CAS  Google Scholar 

  41. Zhang S, Gu Y, Shi Z, Lu N, Xu H (2021) A novel reversible probe based on naphthalimide for sequential detection of Aluminium (Al3+) and fluoride (F-) ions and its applications. Anal Methods 13:5360

    Article  PubMed  CAS  Google Scholar 

  42. Das D, Alam R, Ali M (2022) Rhodamine 6G-based efficient chemosensor for trivalent metal ions (Al3+, Cr3+ and Fe3+ upon single excitation with applications in combinational logic circuits and memory devices. Analyst 147:471

    Article  PubMed  CAS  Google Scholar 

  43. Gharami S, Aich K, Ghosh P, Patra L, Murmu N, Mondal TK (2020) A simple coumarin based “fluorescent on” probe for the selective detection of Al3+ along with its application in live cell imaging via AGS cell line. J Photochem Photobiol A 390:112294

    Article  CAS  Google Scholar 

  44. Luo W, Yuwen Z, Li H, Pu S (2022) A novel bifunctional chemosensor for bioimaging in living cells with highly sensitive colorimetric and fluorescence detection of CN- and Al3+. New J Chem 46:2411

    Article  CAS  Google Scholar 

  45. Tümay SO, Şenocaka A, Mermer A (2021) A “turn-on” small molecule fluorescent sensor for the detection of Al3+ ion in real samples: theoretical calculations, and photophysical and electrochemical properties. New J Chem 45:18400

    Article  Google Scholar 

  46. Bhogal S, Sharma P, Rani P, Kaur K, Malik AK (2022) Synchronous fluorescence determination of Al3+ using 3-hydroxy-2-(4-methoxy phenyl)-4H-chromen-4-one as a fluorescent probe. J Fluoresc 32:359–367

    Article  PubMed  CAS  Google Scholar 

  47. Wang Z, ShuL LX, Tu Y, Lv J, Liu G, Fan C, Pu S (2022) A new high selective and sensitive fluorescent probe for Al3+ based on photochromic salicylaldehyde hydrazyl diarylethene. J Fluoresc 32:2213

    Article  PubMed  CAS  Google Scholar 

  48. Gharami S, Aich K, Sarkar D, Ghosh P, Murmu N, Mondal TK (2019) An ESIPT based chromogenic and fluorescent ratiometric probe for Zn2+ with imaging in live cells and tissues. New J Chem 43:1857

    Article  CAS  Google Scholar 

  49. Liu Z, Zhang Q, Liu H, Liu W, Wang X, Zhao H, Zhang S (2020) Synthesis and fluoride detection properties of a coumarin derivative. Russian J Org Chem 56(12):2222

    Article  CAS  Google Scholar 

  50. Goswami S, Das S, Aich K, Sarkar D, Mondal TK, Quah CK, Fun HK (2013) CHEF induced highly selective and sensitive turn-on fluorogenic and colorimetric sensor for Fe3+. Dalton Trans 42:15113

    Article  PubMed  CAS  Google Scholar 

  51. Liu H, Liu T, Li J, Zhang Y, Li J, Song J, Qu J, Wong WY (2018) A simple Schiff base as dual-responsive fluorescent sensor for bioimaging recognition of Zn2+ and Al3+ in living cells. J Mater Chem 6:5435

    Article  CAS  Google Scholar 

  52. Hou L, Liang W, Deng C, Zhang C, Liu B, Shuang S, Wang Y (2020) Aensitive OFF-ON-OFF fluorescent probe for the cascade sensing of Al3+ and F- ions in aqueous media and living cells. RSC Adv 10:21629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Maity MB, Dutta B, Rahaman A, Sahu N, Mandal DP, Bhattacharjee S, Sinha C (2022) Double advantages of Benzimidazolyl-hydroxy-coumarinyldiad-“turn-on” sensing of Al3+ and preventing metastasis in cancer. J Mol Struct 1250:131870

    Article  CAS  Google Scholar 

  54. Biswas A, Naskar R, Mitra D, Das A, Gharami S, Murmu N, Mondal TK (2022) A new “ turn-on” molecular switch for idiosyncratic detection of Al3+ ion along with its application in live cell imaging. New J Chem 46:21968

    Article  CAS  Google Scholar 

  55. Das B, Dolai M, Ghosh A, Dhara A, Mahapatra AD, Chattopadhyay D, Mabhai S, Jana A, Dey S, Misra A (2021) A bio-compatible pyridine-pyrazole hydrazide based compartmental receptor for Al3+ sensing and its application in cell imaging. Anal Methods 13:4266

    Article  PubMed  CAS  Google Scholar 

  56. Mudi N, Shyamal M, Giri PK, Samanta SS, Ramirtz-Tagle R (2023) Anthracene scaffold as highly selective chemosensor for Al3+ and its AIEE activity. Photochem Photobiol Sci. https://doi.org/10.1007/s43630-023-00392-7

    Article  PubMed  Google Scholar 

  57. Wang M, Lu L, Song W, Wang X, Sun T, Zhu J, Wang J (2021) AIE-active Schiff base compounds as fluorescent probe for the highly sensitive and selective detection of Al3+ ions. J Lumin 233:117911

    Article  CAS  Google Scholar 

  58. Wang J, Feng L, Chao J, Wang Y, Shuang S (2019) A new “turn-on” and reversible fluorescent sensor for Al3+ detection and live cell imaging. Anal Methods 11:5598

    Article  Google Scholar 

  59. Ahfad N, Mohammadnezhad G, Meghdabi S, Farrokhpour H (2020) A naphthylamide based fluorescent probe for detection of Al3+, Fe3+, and CN- with high sensitivity and selectivity. Spectrochim Acta A 228:117753

    Article  CAS  Google Scholar 

  60. Anshori JA, Ismalah D, Abror AF, Zainuddin A, Hidayat IW, Yusuf M, Maharani R, Hidayat AT (2022) A new highly selective “off-on” typical chemosensor of Al3+,1-((Z)-((E)-3,5-dichloro-2-hydroxybenzylidene-2-ol, an experimental and in silico study. RSC Adv 12:2972

Download references

Funding

Authors gratefully acknowledge CSIR, New Delhi, India and Science and Engineering Research Board (SERB), New Delhi, Indiafor financial supports.

Author information

Authors and Affiliations

Authors

Contributions

A. Maji: Investigation, discussion and original draft preparation; R. Naskar: Investigation; D. Mitra: Investigation; S. Gharami: Investigation and discussion; N. Murmu: Reviewing and Editing and T. K. Mondal: Discussion, Reviewing and Editing.

Corresponding author

Correspondence to Tapan Kumar Mondal.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

No relevant financial or non-financial interests to disclose. The authors declare no competing interests.

Conflicts of Interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17697 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, A., Naskar, R., Mitra, D. et al. Fabrication of a New Coumarin Based Fluorescent “turn-on” Probe for Distinct and Sequential Recognition of Al3+ and F Along With Its Application in Live Cell Imaging. J Fluoresc 33, 2403–2414 (2023). https://doi.org/10.1007/s10895-023-03208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03208-0

Keywords

Navigation