Skip to main content
Log in

Chromene Carbohydrazide- Schiff Base as a Highly Selective Turn-Off Fluorescence Chemosensor for In3+ Ion and its Application

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new 7-(diethylamino)-2-oxo-2 H-chromene-3-carbohydrazide design to synthesize a simple Schiff-base condition. The synthesized molecules’ (probe L) photophysical properties were investigated in various solvent systems and solvent-poor-solvent assays. Probe L exhibits the absorbance band at 440 nm and the emission band at 488 nm in DMSO: H2O (7:3, v/v). Further, probe L shows selective turn-off emission recognition of In3+ ions in DMSO: H2O (7:3, pH = 7.4). By Job’s plot and ESI mass analysis, probe L forms a 1:2 stoichiometry complex with an estimated association constant of 4.04 × 104 M− 2 with In3+ ions. Metal induces CHEQ (chelation-caused fluorescence quenching) to reduce the intensity of probe L’s emission, and the estimated quenching constant was 4.52 × 104 M− 1. The limit of detection was found to be 5.93 nM; the time response of the sensor is instantaneous, and its reversible nature was confirmed using EDTA additions. Solid substrates (test strips) were designed and tested for fast, reliable, user-friendly, and real-time sensing of In3+ ions for on-site applications. The binding mechanism of probe L with In3+ ions was investigated using 1H NMR titration and DFT/TD-DFT studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article, and the additional data is included in the supplementary material.

References

  1. Moshtaghie AA, Ghaffari MA (2003) Study of the binding of iron and indium to human serum apo-transferrin. Iran Biomed J 7:73–77

    CAS  Google Scholar 

  2. Nadtochenko VA, Denisov NN, Gak VY et al (2002) Femtosecond relaxation of photoexcited states in nanosized semiconductor particles of iron oxides. Russ Chem Bull 51:457–461

    Article  CAS  Google Scholar 

  3. Chapin RE, Harris MW, Hunter ES III et al (1995) The reproductive and developmental toxicity of indium in the Swiss mouse. Fundam Appl Toxicol 27:140–148

    Article  CAS  PubMed  Google Scholar 

  4. SUZUKI Y, MATSUSHITA H (1969) Interaction of metal ions with phospholipid monolayer and their acute toxicity. Ind Health 7:143–154

    Article  CAS  Google Scholar 

  5. Dash K, Thangavel S, Chaurasia SC, Arunachalam J (2007) Determination of traces of rubidium in high purity cesium chloride by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier. Anal Chim Acta 584:210–214

    Article  CAS  PubMed  Google Scholar 

  6. Połedniok J (2007) A sensitive spectrophotometric method for determination of trace quantities of indium in soil. Water Air Soil Pollut 186:343–349

    Article  ADS  Google Scholar 

  7. Orians KJ, Boyle EA (1993) Determination of picomolar concentrations of titanium, gallium and indium in sea water by inductively coupled plasma mass spectrometry following an 8-hydroxyquinoline chelating resin preconcentration. Anal Chim Acta 282:63–74

    Article  CAS  Google Scholar 

  8. Kang JH, Kim MS, Yun D, Kim C (2018) Detection of Ga3 + and Cu2 + by a simple quinoline-based bifunctional chemosensor. Sens Lett 16:485–497

    Article  Google Scholar 

  9. Diana R, Caruso U, Concilio S et al (2018) A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions. Dyes Pigm 155:249–257

    Article  CAS  Google Scholar 

  10. Cho H, Chae JB, Kim C (2018) A thiophene-based blue-fluorescent emitting chemosensor for detecting indium (III) ion. Inorg Chem Commun 97:171–175

    Article  CAS  Google Scholar 

  11. Wei T-B, Dong H-Q, Ma X-Q et al (2021) A novel photochemical sensor based on quinoline-functionalized phenazine derivatives for multiple substrate detection. New J Chem 45:5040–5048

    Article  CAS  Google Scholar 

  12. Zheng Q, Ding F, Hu X et al (2021) ESIPT-based fluorescent probe for bioimaging and identification of group IIIA ions in live cells and zebrafish. Bioorg Chem 109:104746

    Article  CAS  PubMed  Google Scholar 

  13. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  CAS  PubMed  Google Scholar 

  14. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  15. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to zn 2 + and dual-mode ratiometric response to Al 3 + in aqueous media. Chem Commun 48:1039–1041

    Article  CAS  Google Scholar 

  16. Aatif AM, Kumar RS, Joseph S et al (2023) Pyridinecarbohydrazide-based fluorescent chemosensor for In3 + ions and its applications in water samples, live cells, and zebrafish imaging. J Photochem Photobiol A 434:114257

    Article  Google Scholar 

  17. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83. https://doi.org/10.1016/s0010-8545(00)00242-3

    Article  CAS  Google Scholar 

  18. Roy A, Nandi M, Roy P (2021) Dual chemosensors for metal ions: a comprehensive review. TRAC Trends Anal Chem 138:116204

    Article  CAS  Google Scholar 

  19. Ho M-L, Hwang F-M, Chen P-N et al (2006) Design and synthesis of iridium (III) azacrown complex: application as a highly sensitive metal cation phosphorescence sensor. Org Biomol Chem 4:98–103

    Article  CAS  PubMed  Google Scholar 

  20. Roy SB, Mondal J, Khuda-Bukhsh AR, Rajak KK (2016) A novel fluorene based turn on fluorescent sensor for the determination of zinc and cadmium: experimental and theoretical studies along with live cell imaging. New J Chem 40:9593–9608

    Article  CAS  Google Scholar 

  21. Sil A, Maity A, Giri D, Patra SK (2016) A phenylene–vinylene terpyridine conjugate fluorescent probe for distinguishing Cd2 + from Zn2 + with high sensitivity and selectivity. Sens Actuators B 226:403–411

    Article  CAS  Google Scholar 

  22. Fabbrizzi L, Licchelli M, Rabaioli G, Taglietti A (2000) The design of luminescent sensors for anions and ionisable analytes. Coord Chem Rev 205:85–108

    Article  CAS  Google Scholar 

  23. Ghosh T, Maiya BG, Samanta A (2006) A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. Dalton Trans 795–801

  24. De Silva AP, Gunaratne HQN, Gunnlaugsson T et al (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  25. Enbanathan S, Munusamy S, Jothi D et al (2024) A thiophene-linked terpyridine based phenanthridine chemoreceptor for Cd2 + and Cr3 + selective ratiometric fluorescence detection in environmental water and rice samples. Anal Chim Acta 1288:342179

    Article  CAS  PubMed  Google Scholar 

  26. Kumar SM, Munusamy S, Jothi D et al (2023) Imidazole-based dual functional chemosensor for the recognition of Cu2 + and CN–: applications in real water samples and colorimetric test strips. Opt Mater 144:114382

    Article  CAS  Google Scholar 

  27. Enbanathan S, Munusamy S, Jothi D et al (2022) Zinc ion detection using a benzothiazole-based highly selective fluorescence turn-on chemosensor and its real-time application. RSC Adv 12:27839–27845

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar SM, Munusamy S, Manickam S et al (2023) A novel imidazole bearing bithiophene benzothiazole as a ratiometric fluorescent sensor for the selective discrimination of Al3 + ions: application to environmental water, pharmaceutical samples, and fluorescence live cell imaging. J Mol Liq 381:121828

    Article  CAS  Google Scholar 

  29. Sawminathan S, Munusamy S, Manickam S et al (2021) Azine based fluorescent rapid off-on chemosensor for detecting Th4 + and Fe3 + ions and its real-time application. Dyes Pigm 196:109755

    Article  CAS  Google Scholar 

  30. Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29:20–31

    Article  CAS  Google Scholar 

  31. Xia D, Wang P, Shi B (2017) Cu (II) ion-responsive self-assembly based on a water-soluble pillar [5] arene and a rhodamine B-containing amphiphile in aqueous media. Org Lett 19:202–205

    Article  CAS  PubMed  Google Scholar 

  32. Wu J, Liu W, Ge J et al (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495. https://doi.org/10.1039/C0CS00224K

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Men G, Zhao L et al (2010) Binaphthyl-derived salicylidene Schiff base for dual-channel sensing of Cu, Zn cations and integrated molecular logic gates. Sens Actuators B 145:826–831

    Article  CAS  Google Scholar 

  34. Lee JJ, Choi YW, You GR et al (2015) A phthalazine-based two-in-one chromogenic receptor for detecting Co 2 + and Cu 2 + in an aqueous environment. Dalton Trans 44:13305–13314

    Article  CAS  PubMed  Google Scholar 

  35. Choi YW, Park GJ, Na YJ et al (2014) A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn (II) and Al (III) and colorimetric sensor for Fe (II) and Fe (III). Sens Actuators B 194:343–352

    Article  CAS  Google Scholar 

  36. Jung HJ, Singh N, Lee DY, Jang DO (2010) Single sensor for multiple analytes: chromogenic detection of I – and fluorescent detection of Fe3+. Tetrahedron Lett 51:3962–3965

    Article  CAS  Google Scholar 

  37. Zhu S, Yang L, Zhao Y (2024) Ethyl 3-aminobenzo [b] thiophene-2-carboxylate derived Ratiometric Schiff Base fluorescent sensor for the Recognition of In3 + and Pb2+. J Fluoresc 1–11

  38. Majeed SA, Kumar SKA (2021) A turn-on fluorescent probe for Lu3 + recognition and bio-imaging in live cells and zebrafish. Anal Methods 13:212–221

    Article  PubMed  Google Scholar 

  39. Saravana Kumar S, Selva Kumar R, Ashok Kumar SK (2020) Development of highly selective dual mode chromogenic and fluorogenic chemosensor for Bi3 + ions. J Mol Struct 1212:128143. https://doi.org/10.1016/j.molstruc.2020.128143

    Article  CAS  Google Scholar 

  40. Kumar SS, Kumar SR, Vetriarasu V et al (2022) Smartphone-assisted Quinoline‐Based Chromogenic Probe for the selective detection of Hg2 + in. Protic Media ChemistrySelect 7:e202103422

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision D. 01. Gaussian 09, Revision D 01, Inc, Wallingford CT

  42. Kruse H, Goerigk L, Grimme S (2012) Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem 77:10824–10834

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Yuan S, Wang E (2018) A dual-target fluorescent probe with response-time dependent selectivity for cd 2 + and Cu 2+. J Fluoresc 28:1115–1119

    Article  CAS  PubMed  Google Scholar 

  44. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  ADS  CAS  Google Scholar 

  45. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. J Chem Phys 77:3654–3665

    Article  ADS  CAS  Google Scholar 

  46. Popczyk A, Cheret Y, El-Ghayoury A et al (2020) Solvatochromic fluorophores based on thiophene derivatives for highly-precise water, alcohols and dangerous ions detection. Dyes Pigm 177:108300

    Article  CAS  Google Scholar 

  47. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer

  48. Patra D, Barakat C (2011) Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochim Acta Part A Mol Biomol Spectrosc 79:1034–1041

    Article  ADS  CAS  Google Scholar 

  49. Würth C, Grabolle M, Pauli J et al (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8:1535

    Article  PubMed  Google Scholar 

  50. Nie H, Hu K, Cai Y et al (2017) Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching? Mater Chem Front 1:1125–1129

    Article  CAS  Google Scholar 

  51. Benesi HA, Hildebrand JH (1949) A Spectrophotometric Investigation of the Interaction of Iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707. https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  52. Sedgwick AC, Wu L, Han H-H et al (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 47:8842–8880

    Article  CAS  PubMed  Google Scholar 

  53. Kumar SS, Kumar RS, Kumar SKA (2020) Development of highly selective dual mode chromogenic and fluorogenic chemosensor for Bi3 + ions. J Mol Struct 128143. https://doi.org/10.1016/j.molstruc.2020.128143

  54. Long GL, Winefordner JD (1983) Limit of detection A closer look at the IUPAC definition. Anal Chem 55. https://doi.org/10.1021/ac00258a724. :712A-724A

  55. Organization WH (1996) WHO Guidelines For Drinking Water Quality 2nd Edition

  56. Green NJB, Pimblott SM, Tachiya M (1993) Generalizations of the Stern-Volmer relation. J Phys Chem 97:196–202

    Article  CAS  Google Scholar 

  57. Job P (1928) Formation and stability of inorganic complexes in solution. Annali Di Chim Appl 9:113–203

    CAS  Google Scholar 

  58. Hossain A, Canning J, Ast S et al (2015) Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water. IEEE Sens J 15:5095–5102

    Article  ADS  CAS  Google Scholar 

  59. Selva Kumar R, Ashok Kumar SK, Vijayakrishna K et al (2018) Development of the smartphone-assisted colorimetric detection of Thorium by using New Schiff’s base and its applications to real time samples. Inorg Chem 57:15270–15279

    Article  Google Scholar 

Download references

Acknowledgements

The authors from Chikkanna Government Arts College would like to acknowledge Bharathiyar University, Coimbatore, India, for NMR spectral analysis, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India, for IR spectral analysis, Karunya Institue of Technology and Sciences (Deemed University), Coimbatore, India for UV-visible spectral analysis.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

S. Jayapriya: Conceptualization, Methodology, Writing - Original Draft. A. Franklin Ebenazer: Resources, Data curation. N. Sampathkumar: Formal analysis, Writing - Review & Editing. J. Rajesh: Formal analysis, Writing - Review & Editing.G*. Rajagopal: Supervision, Project administration, Writing - Review & Editing.

Corresponding author

Correspondence to G. Rajagopal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayapriya, S., Ebenazer, A., Sampathkumar, N. et al. Chromene Carbohydrazide- Schiff Base as a Highly Selective Turn-Off Fluorescence Chemosensor for In3+ Ion and its Application. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03655-3

Keywords

Navigation