Skip to main content
Log in

Pyrene functionalized oxacalix[4]arene architecture as dual readout sensor for expeditious recognition of cyanide anion

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A pyrene functionalized oxacalix[4]arene architecture (DPOC) was utilized as a fluorescence probe for selective recognition of cyanide ions. The receptor DPOC shows excellent selectivity towards cyanide ion with a red shift of 108 nm in absorption band along with a significant change in colour from light yellow to pink. The fluorescence titration experiments further confirm the lower limit of detection as 1.7µM with no significant influences of competing anions. 1 H-NMR titration experiments support the deprotonation phenomena, as the -NH proton disappears upon successive addition of cyanide ions. The DFT calculation also indicates a certain increment of -NH bond length upon interaction with cyanide ions. The spectral properties as well as colour of DPOC-CN system may be reversed upon the addition of Ag+/ Cu2+ ions up to 5 consecutive cycles. Moreover, DPOC coated “test strips” were prepared for visual detection of cyanide ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material/Data availability

In detailed synthesis and characterization data has been included as an electronic supplementary information.

Code Availability

Not applicable.

References

  1. Vora M, Kongor A, Panchal M et al (2020) A highly selective anthraquinone appended oxacalixarene receptor for fluorescent ICT sensing of F – ions: an experimental and computational study. J Chem Sci 132:1–10. https://doi.org/10.1007/s12039-020-01862-6

    Article  CAS  Google Scholar 

  2. Athar M (2017) Entrapment of Toxic Anions using Calixarenes Framework. https://doi.org/10.15406/mojt.2017.03.00074. MOJ Toxicol 3:

  3. Hendry-Hofer TB, Ng PC, Witeof AE et al (2019) A Review on Ingested Cyanide: Risks, Clinical Presentation, Diagnostics, and Treatment Challenges. J Med Toxicol 15:128–133. https://doi.org/10.1007/s13181-018-0688-y

    Article  CAS  PubMed  Google Scholar 

  4. Goodman BA, Allison LMJ, Oparka KJ, Hillman JR (1992) Xenobiotics: Their activity and mobility in plants and soils. J Sci Food Agric 59:1–20. https://doi.org/10.1002/jsfa.2740590103

    Article  CAS  Google Scholar 

  5. Zoltani CK (2020) The cardiovascular system as a target of chemical warfare agents. INC

  6. Copper CL, Collins GE (2004) Separation of thiol and cyanide hydrolysis products of chemical warfare agents by capillary electrophoresis. Electrophoresis 25:897–902. https://doi.org/10.1002/elps.200305775

    Article  CAS  PubMed  Google Scholar 

  7. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181

    Article  CAS  Google Scholar 

  8. Dzombak DA, Ghosh RS, Wong-Chong GM (2005) Cyanide in water and soil: chemistry, risk, and management. CRC press

  9. Coentrão L, Moura D (2011) Acute cyanide poisoning among jewelry and textile industry workers. Am J Emerg Med 29:78–81. https://doi.org/10.1016/j.ajem.2009.09.014

    Article  PubMed  Google Scholar 

  10. Jones J, McMullen MJ, Dougherty J (1987) Toxic smoke inhalation: Cyanide poisoning in fire victims. Am J Emerg Med 5:317–321. https://doi.org/10.1016/0735-6757(87)90360-3

    Article  CAS  PubMed  Google Scholar 

  11. Cortea IM, Ratoiu L, Rădvan R (2020) Characterization of spray paints used in street art graffiti by a non-destructive multi-analytical approach. Color Res Appl 1–12. https://doi.org/10.1002/col.22561

  12. Nonomura M, Suzuki M, Hobo T et al (1993) Cyanide Formation in Oxime Blocked Isocyanates of Cation Electro-Deposited Paints. Toxicol Environ Chem 39:65–70. https://doi.org/10.1080/02772249109357902

    Article  CAS  Google Scholar 

  13. Hachiya H, Ito S, Fushinuki Y et al (1999) Continuous monitoring for cyanide in waste water with a galvanic hydrogen cyanide sensor using a purge system. Talanta 48:997–1004. https://doi.org/10.1016/S0039-9140(98)00314-2

    Article  CAS  PubMed  Google Scholar 

  14. Makame M, Hahn SK (1987) Effects of reciprocal stem grafts on cyanide translocation in cassava. J Agric Sci 109:605–608. https://doi.org/10.1017/S0021859600081855

    Article  Google Scholar 

  15. Long L, Han Y, Yuan X et al (2020) A novel ratiometric near-infrared fluorescent probe for monitoring cyanide in food samples. Food Chem 331:127359. https://doi.org/10.1016/j.foodchem.2020.127359

    Article  CAS  PubMed  Google Scholar 

  16. Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Min Eng 50–51:13–29. https://doi.org/10.1016/j.mineng.2013.05.027

    Article  CAS  Google Scholar 

  17. Dash RR, Gaur A, Balomajumder C (2009) Cyanide in industrial wastewaters and its removal: A review on biotreatment. J Hazard Mater 163:1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051

    Article  CAS  PubMed  Google Scholar 

  18. Organization WH (1993) Guidelines for drinking-water quality. World Health Organization

  19. Wang F, Wang L, Chen X, Yoon J (2014) Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev 43:4312–4324. https://doi.org/10.1039/c4cs00008k

    Article  CAS  PubMed  Google Scholar 

  20. Gale PA, Caltagirone C (2018) Fluorescent and colorimetric sensors for anionic species. Coord Chem Rev 354:2–27. https://doi.org/10.1016/j.ccr.2017.05.003

    Article  CAS  Google Scholar 

  21. Wang L, Chen X, Cao D (2016) A cyanide-selective colorimetric “naked-eye” and fluorescent chemosensor based on a diketopyrrolopyrrole-hydrazone conjugate and its use for the design of a molecular-scale logic device. RSC Adv 6:96676–96685. https://doi.org/10.1039/c6ra21669b

    Article  CAS  Google Scholar 

  22. Mahapatra AK, Manna SK, Pramanik B et al (2015) Colorimetric and ratiometric fluorescent chemodosimeter for selective sensing of fluoride and cyanide ions: Tuning selectivity in proton transfer and C-Si bond cleavage. RSC Adv 5:10716–10722. https://doi.org/10.1039/c4ra12910e

    Article  CAS  Google Scholar 

  23. Sutariya PG, Soni H, Gandhi SA, Pandya A (2020) Turn on fluorescence strip based sensor for recognition of Sr2 + and CN – via lowerrim substituted calix[4]arene and its computational investigation. Spectrochim Acta - Part A Mol Biomol Spectrosc 238:118456. https://doi.org/10.1016/j.saa.2020.118456

    Article  CAS  Google Scholar 

  24. Wu D, Sedgwick AC, Gunnlaugsson T et al (2017) Fluorescent chemosensors: The past, present and future. Chem Soc Rev 46:7105–7123. https://doi.org/10.1039/c7cs00240h

    Article  CAS  PubMed  Google Scholar 

  25. Lee M, Moon JH, Swamy KMK et al (2014) A new bis-pyrene derivative as a selective colorimetric and fluorescent chemosensor for cyanide and fluoride and anion-activated CO2 sensing. Sens Actuators B Chem 199:369–376. https://doi.org/10.1016/j.snb.2014.04.005

    Article  CAS  Google Scholar 

  26. Kim H, Rao BA, Son YA (2013) Optical properties of novel pyrene fluoric chemosensor toward fluoride anions. Fibers Polym 14:2010–2014. https://doi.org/10.1007/s12221-013-2010-6

    Article  CAS  Google Scholar 

  27. Dey S, Kumar A, Mondal PK et al (2020) An oxacalix[4]arene derived dual sensing fluorescent probe for the detection of As(V) and Cr (VI) oxyanions in aqueous media †. Dalt Trans 49:7459–7466. https://doi.org/10.1039/d0dt00452a

    Article  CAS  Google Scholar 

  28. Panchal M, Athar M, Jha PC et al (2016) Turn-off fluorescence probe for the selective determination of pendimethalin using a mechanistic docking model of novel oxacalix[4]arene. RSC Adv 6:53573–53577. https://doi.org/10.1039/c6ra05707a

    Article  CAS  Google Scholar 

  29. Modi K, Panchal U, Patel C et al (2018) Dual: In vitro and in silico analysis of thiacalix[4]arene dinaphthalene sulfonate for the sensing of 4-nitrotoluene and 2,3-dinitrotoluene. New J Chem 42:2682–2691. https://doi.org/10.1039/c7nj03820h

    Article  CAS  Google Scholar 

  30. Panchal M, Athar M, Jha PC et al (2017) Quinoline appended oxacalixarene as turn-off fluorescent probe for the selective and sensitive determination of Cu2 + ions: A combined experimental and DFT study. J Lumin 192:256–262. https://doi.org/10.1016/j.jlumin.2017.06.052

    Article  CAS  Google Scholar 

  31. Panchal M, Kongor A, Athar M et al (2020) Structural motifs of oxacalix[4]arene for molecular recognition of nitroaromatic explosives: Experimental and computational investigations of host-guest complexes. J Mol Liq 306:112809. https://doi.org/10.1016/j.molliq.2020.112809

    Article  CAS  Google Scholar 

  32. Modi K, Panchal U, Dey S et al (2016) Thiacalix[4]arene-tetra-(quinoline-8- sulfonate): a Sensitive and Selective Fluorescent Sensor for Co (II). J Fluoresc 26:1729–1736. https://doi.org/10.1007/s10895-016-1864-6

    Article  CAS  PubMed  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09, Revision B. 01; 2009. Wallingford, CT

  34. Avery P, Ludowieg H, Autschbach J, Zurek E (2018) Extended Hückel calculations on solids using the Avogadro molecular editor and visualizer. J Chem Educ 95:331–337

    Article  CAS  Google Scholar 

  35. Khan RI, Ramu A, Pitchumani K (2018) Design and one-pot synthesis of a novel pyrene based fluorescent sensor for selective “turn on”, naked eye detection of Ni2 + ions, and live cell imaging. Sens Actuators B Chem. 266: 29-437. https://doi.org/10.1016/j.snb.2018.03.137

    Article  CAS  Google Scholar 

  36. Pike RD (2012) Structure and bonding in copper(I) carbonyl and cyanide complexes. Organometallics 31:7647–7660. https://doi.org/10.1021/om3004459

    Article  CAS  Google Scholar 

  37. Zhao J, Yang D, Yang XJ, Wu B (2019) Anion coordination chemistry: From recognition to supramolecular assembly. Coord Chem Rev 378:415–444. https://doi.org/10.1016/j.ccr.2018.01.002

    Article  CAS  Google Scholar 

  38. Li H, Li B, Jin LY et al (2011) A rapid responsive and highly selective probe for cyanide in the aqueous environment. Tetrahedron 67:7348–7353. https://doi.org/10.1016/j.tet.2011.07.023

    Article  CAS  Google Scholar 

  39. Jiang ZJ, Lv HS, Zhu J, Zhao BX (2012) New fluorescent chemosensor based on quinoline and coumarine for Cu 2+. Synth Met 162:2112–2116. https://doi.org/10.1016/j.synthmet.2012.09.013

    Article  CAS  Google Scholar 

  40. Selva Kumar R, Kumar SKA (2019) Highly selective fluorescent chemosensor for the relay detection of Al3 + and picric acid. Inorg Chem Commun 106:165–173. https://doi.org/10.1016/j.inoche.2019.06.007

    Article  CAS  Google Scholar 

  41. Yang X, Zheng L, Xie L et al (2015) Colorimetric and On-Off fluorescent chemosensor for fluoride ion based on diketopyrrolopyrrole. Sens Actuators B Chem 207:9–24. https://doi.org/10.1016/j.snb.2014.10.095

    Article  CAS  Google Scholar 

  42. Dey S, Kumar A, Mahto A et al (2020) Oxacalix[4]arene templated silver nanoparticles as dual readout sensor: Developing portable kit for rapid detection of methylmercury and its speciation. Sens Actuators B Chem 317:128180. https://doi.org/10.1016/j.snb.2020.128180

    Article  CAS  Google Scholar 

  43. Chen KY, Lin WC (2015) A simple 7-azaindole-based ratiometric fluorescent sensor for detection of cyanide in aqueous media. Dye Pigment 123:1–7. https://doi.org/10.1016/j.dyepig.2015.07.012

    Article  CAS  Google Scholar 

  44. Roy SB, Maity A, Rajak KK (2017) A turn-off fluorescence sensor for cyanide detection which in turn inhibit 2-way ESIPT investigated by experimental and theoretical study. Inorg Chem Commun 76:81–86. https://doi.org/10.1016/j.inoche.2017.01.009

    Article  CAS  Google Scholar 

  45. Wei TB, Ding JD, Chen JF et al (2018) A cyanide-triggered hydrogen-bond-breaking deprotonation mechanism: Fluorescent detection of cyanide using a thioacetohydrazone-functionalized bispillar[5]arene. New J Chem 42:1271–1275. https://doi.org/10.1039/c7nj03937a

    Article  CAS  Google Scholar 

  46. Erdemir S, Malkondu S (2020) On-site and low-cost detection of cyanide by simple colorimetric and fluorogenic sensors: Smartphone and test strip applications. Talanta 207:120278. https://doi.org/10.1016/j.talanta.2019.120278

    Article  CAS  PubMed  Google Scholar 

  47. Li Z, Liu C, Wang S et al (2019) Visual detection of cyanide ion in aqueous medium by a new chromogenic azo-azomethine chemosensor. Spectrochim Acta - Part A Mol Biomol Spectrosc 210:321–328. https://doi.org/10.1016/j.saa.2018.11.052

    Article  CAS  Google Scholar 

  48. Reddy PM, Hsieh SR, Wu WC et al (2018) Quinone based oligomeric sensors as colorimetric probes for cyanide anion: Effects of solvent medium and substituent on sensing. React Funct Polym 123:26–33. https://doi.org/10.1016/j.reactfunctpolym.2017.12.007

    Article  CAS  Google Scholar 

  49. Reddy PM, Hsieh SR, Chang CJ, Kang JY (2017) Detection of cyanide ions in aqueous solutions using cost effective colorimetric sensor. J Hazard Mater 334:93–103. https://doi.org/10.1016/j.jhazmat.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  50. Reddy PM, Hsieh SR, Lee MC et al (2019) Aniline trimer based chemical sensor for dual responsive detection of hazardous CN¯ ions and pH changes. Dye Pigment 164:327–334. https://doi.org/10.1016/j.dyepig.2019.01.042

    Article  CAS  Google Scholar 

  51. Madhusudhana Reddy P, Hsieh SR, Chen JK et al (2017) Robust, sensitive and facile method for detection of F–, CN – and Ac – anions. Spectrochim Acta - Part A Mol Biomol Spectrosc 186:8–16. https://doi.org/10.1016/j.saa.2017.06.004

    Article  CAS  Google Scholar 

  52. Lee Y, Do, Park GJ, Choi YW, Kim C (2015) Colorimetric cyanide chemosensor based on an amide-pyrene moiety: Experimental and theoretical studies. Bull Korean Chem Soc 36:2640–2645. https://doi.org/10.1002/bkcs.10534

    Article  CAS  Google Scholar 

  53. Dong ZM, Wang W, Wang Y, Bin et al (2017) A reversible colorimetric chemosensor for “ Naked Eye ” sensing of cyanide ion in semi-aqueous solution. Inorganica Chim Acta. 61: 8-14. https://doi.org/10.1016/j.ica.2017.02.004

    Article  CAS  Google Scholar 

  54. Nie HM, Gong C, Bin, Tang Q et al (2014) Visual and reversible detection of cyanide ions in protic solvents by a novel colorimetric receptor. Dye Pigment 106:74–80. https://doi.org/10.1016/j.dyepig.2014.02.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge UGC Information and Library Network (INFLIBNET) (Ahmedabad) for e-journals, IIT Ropar for providing instrument facilities including NMR and ESI-MS. Department of Chemistry, Gujarat University has also been acknowledged for providing infrastructures and analytical facilities.

Funding

Falak Panjwani gratefully acknowledge the financial support from the SHODH Scheme, Education Department, Gujarat (KCG/SHODH/2020-21/201901380108). The authors gratefully acknowledge the financial support from LSRB-DRDO (LSRB/01/15001/M/LSRB-373/BTB/2020). Anita Kongor thankfully acknowledges the financial assistance provided by Council of Scientific & Industrial Research (CSIR), New Delhi for Research Associateship Fellowship (File No. 09/70/0073/2K20 EMR-I). Anshu Kumar acknowledges SERB for National Post-Doctoral Fellowship (PDF/2017/001256). Manoj Vora gratefully acknowledges the financial support received from UGC in the form of Rajiv Gandhi National Fellowship, through RGNF-JRF (RGNF-2017-18-SC-GUJ-47048). Manthan K. Panchal gratefully acknowledges Human Resource Development Group - Council of Scientific & Industrial Research (CSIR), New Delhi for Research Associateship Fellowship (File No. 09/70/0064/2K19 EMR-I). Ashukumar verma gratefully acknowledge the financial support from the SHODH Scheme, Education Department, Gujarat (KCG/SHODH/2020-21/201901380090).

Author information

Authors and Affiliations

Authors

Contributions

Falak Panjwani

Data curation, Writing- Original draft preparation,

Shuvankar Dey

Methodology, Writing- Reviewing and Editing,

Anita Kongor

Validation.

Anshu Kumar

Visualization, Investigation,

Manthan Panchal

Conceptualization,

Krunal M Modi

Formal analysis, Software.

Manoj Vora

Writing- Reviewing and Editing.

Ashu Kumar

Formal Analysis.

Vinod Kumar Jain

Supervision, Project administration, Funding acquisition,

Corresponding author

Correspondence to Vinod Kumar Jain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval/declarations

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panjwani, F., Dey, S., Kongor, A. et al. Pyrene functionalized oxacalix[4]arene architecture as dual readout sensor for expeditious recognition of cyanide anion. J Fluoresc 32, 1425–1433 (2022). https://doi.org/10.1007/s10895-022-02924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02924-3

Keywords

Navigation