Skip to main content

Advertisement

Log in

A highly selective anthraquinone appended oxacalixarene receptor for fluorescent ICT sensing of F ions: an experimental and computational study

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A new anthraquinone appended oxacalix[4]arene (DAQOC) has been synthesized and characterized by different 1H NMR, IR, ESI-MS and 13C NMR spectroscopic techniques. This compound was explored for its sensing abilities towards various anions. DAQOC showed selective anion sensing behaviour towards F ions which was supported by absorption as well as emission studies. Among other anions, only in the presence of F ions, a quenching in the fluorescence emission of over 79% was observed due to changes in the intermolecular charge transfer (ICT) process. DAQOC exhibited high selectivity and good sensitivity toward F ions in the presence of competing ions and the detection limit was found to be 1.23 µM. 1H NMR titration displays that the peak corresponding to –NH protons (at 12.91 ppm) disappears upon interaction with F, suggesting that the sensing mechanism follows the deprotonation route. The geometrical features of F bound oxacalixarene species were modelled by the Density Functional Theory (DFT) and NCIPlot calculations. The findings suggested that the appended substituents including nitro groups and anthraquinone can make the calix[4]arene ring electron deficient and thereby more susceptible for F ions. Moreover, this present chemosensor has been applied for recognition of F ions from waste water samples which is of direct practical relevance.

Graphic abstract

A new anthraquinone appended oxacalix[4]arene has been explored for its sensing abilities towards F by absorption and emission studies. An intermolecular charge transfer mechanism has been attributed due to the deprotonation of N–H groups in DAQOC. DAQOC-F complex is modelled by the Density Functional Theory and NCIPlot calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hein R, Beer P D and Davis J J 2020 Electrochemical anion sensing: supramolecular approaches Chem. Rev. 120 1888

    Article  CAS  Google Scholar 

  2. Pollick H 2018 The role of fluoride in the prevention of tooth decay Pediatr. Clin. 65 923

    Google Scholar 

  3. Pereira A G, Chiba F Y, Mattera, M S d L C, Pereira R F, Nunes R d C A, Tsosura T V S, Okamoto R and Sumida D H 2017 Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats J. Trace. Elem. Med. Bio. 39 140

    Article  CAS  Google Scholar 

  4. Kanduti D, Sterbenk P and Artnik B 2016 Fluoride: a review of use and effects on health Mater. Sociomed. 28 133

    Article  Google Scholar 

  5. Black R M and Read R W 2007 Environmental and biomedical sample analysis in support of allegations of use of chemical warfare agents Toxin Rev. 26 275

    Article  CAS  Google Scholar 

  6. Kingery A F and Allen H E 1995 The environmental fate of organophosphorus nerve agents: a review Toxicol. Environ. Chem. 47 155

    Article  CAS  Google Scholar 

  7. Busschaert N, Caltagirone C, Van Rossom W and Gale P A 2015 Applications of supramolecular anion recognition Chem. Rev. 115 8038

    Article  CAS  Google Scholar 

  8. Kumar R, Sharma A, Singh H, Suating P, Kim H S, Sunwoo K, Shim I, Gibb B C and Kim J S 2019 Revisiting fluorescent calixarenes: from molecular sensors to smart materials Chem. Rev. 119 9657

    Article  CAS  Google Scholar 

  9. Mehta V, Panchal M, Modi K, Kongor A, Panchal U and Jain V K 2015 The chemistry of nascent oxacalix [n] hetarene (n ≥ 4): a review Curr. Org. Chem. 19 1077

    Article  CAS  Google Scholar 

  10. Panchal M, Kongor A, Athar M, Modi K, Patel C, Dey, S, Vora M, Bhadresha K, Rawal R, Jha P C and Jain V K 2020 Structural motifs of oxacalix [4] arene for molecular recognition of nitroaromatic explosives: experimental and computational investigations of host-guest complexes J. Mol. Liq. 112809

  11. Wu J R and Yang Y W 2019 New opportunities in synthetic macrocyclic arenes Chem. Comm. 55 1533

    Article  CAS  Google Scholar 

  12. Ma J X, Fang X, Xue M and Yang Y 2019 Synthesis, structure, and anion binding of functional oxacalix [4] arenes Org. Biomol. Chem. 17 5075

    Article  CAS  Google Scholar 

  13. Van Rossom W, Caers J, Robeyns K, Van Meervelt L, Maes W and Dehaen W 2012 (Thio) ureido anion receptors based on a 1, 3-alternate oxacalix [2] arene [2] pyrimidine scaffold J. Org. Chem. 77 2791

    Article  Google Scholar 

  14. Hou B Y, Wang D X, Yang H B, Zheng Q Y and Wang M X 2007 Synthesis and structure of upper-rim 1, 3-alternate tetraoxacalix [2] arene [2] triazine azacrowns and change of cavity in response to fluoride anion J. Org. Chem. 72 5218

    Article  CAS  Google Scholar 

  15. An L, Wang J W, Wang C, Zhou S S, Sun J and Yan C G 2018 2, 3-Ethylene-bridged dihomooxacalix [4] arenes: synthesis, X-ray crystal structures and highly selective binding properties with anions New J. Chem. 42 10689

    Article  CAS  Google Scholar 

  16. Liu W, Wang Q Q, Huang Z T and Wang D X 2014 Design, structure and anion recognition of larger-rim functionalized oxacalix [2] arene [2] triazine hosts Tetrahedron Lett. 55 3172

    Article  CAS  Google Scholar 

  17. Augusto A S, Miranda A S, Ascenso J R, Miranda M Q, Félix V, Brancatelli G, Hickey N, Geremia S and Marcos P M 2018 Anion recognition by partial cone dihomooxacalix[4] arene-based receptors bearing urea groups: remarkable affinity for benzoate ion Eur. J. Org. Chem. 2018 5657

    Article  CAS  Google Scholar 

  18. Panchal M K, Athar M, Jha P C, Kongor A, Mehta V and Jain V K 2017 Quinoline appended oxacalixarene as turn-off fluorescent probe for the selective and sensitive determination of Cu2+ ions: a combined experimental and DFT study J. Lumin. 192 256

    Article  CAS  Google Scholar 

  19. Katz J L, Feldman M B and Conry R R 2005 Synthesis of functionalized oxacalix[4] arenes Org. Lett. 7 91

    Article  CAS  Google Scholar 

  20. Mehta V, Athar M, Jha P C, Panchal M K, Modi K and Jain V K 2016 Efficiently functionalized oxacalix[4] arenes: synthesis, characterization and exploration of their biological profile as novel HDAC inhibitors Bioorg. Med. Chem. Lett. 26 1005

    Article  CAS  Google Scholar 

  21. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricat, M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 Gaussian 09, Revision B.01. Wallingford CT

  22. Grimme S 2006 Semiempirical GGA-type density functional constructed with a long-range dispersion correction J. Comput. Chem. 27 1787

    Article  CAS  Google Scholar 

  23. Athar M, Lone M Y and Jha P C 2017 Investigation of structural and conformational equilibrium of Oxacalix [4] arene: a density functional theory approach J. Mol. Liq. 237 473

    Article  CAS  Google Scholar 

  24. Boys S F and Bernardi F D 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  25. Boys S and Bernardi F 2002 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 100 65

    Article  Google Scholar 

  26. Contreras-García J, Johnson E R, Keinan S, Chaudret R, Piquemal J P, Beratan D N, Yang W 2011 NCIPLOT: a program for plotting noncovalent interaction regions Chem. Theory. Comput. 7 625

    Article  Google Scholar 

  27. Batista R M, Costa S P and Raposo M M M 2013 Naphthyl-imidazo-anthraquinones as novel colorimetric and fluorimetric chemosensors for ion sensing J. Photochem. Photobiol. A 259 33

    Article  CAS  Google Scholar 

  28. Jones J E, Kariuki B M, Ward B D and Pope S J 2011 Amino-anthraquinone chromophores functionalised with 3-picolyl units: structures, luminescence, DFT and their coordination chemistry with cationic Re (I) di-imine complexes Dalton Trans. 40 3498

    Article  CAS  Google Scholar 

  29. Devaraj S, Saravanakumar D and Kandaswamy M 2007 Dual chemosensing properties of new anthraquinone-based receptors toward fluoride ions Tetrahedron Lett. 48 3077

    Article  CAS  Google Scholar 

  30. Langdon-Jones E E and Pope S J 2014 The coordination chemistry of substituted anthraquinones: developments and applications Coord. Chem. Rev. 269 32

    Article  CAS  Google Scholar 

  31. Hoten M, Kojima Y and Ito T 1992 Halochromism of acrylic fibres dyed with some disperse dyes J. Soc. Dyers Colour. 108 21

    Article  CAS  Google Scholar 

  32. Chen X, Leng T, Wang C, Shen Y and Zhu W 2017 A highly selective naked-eye and fluorescent probe for fluoride ion based on 1,8-naphalimide and benzothizazole Dyes Pigm. 141 299

    Article  CAS  Google Scholar 

  33. Gunnlaugsson T, Davis A P, O’Brien J E and Glynn M 2005 Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate Org. Biomol. Chem. 3 48

    Article  CAS  Google Scholar 

  34. Bobe S R, Bhosale S V, Jones L, Puyad A L, Raynor A M and Bhosale S V 2015 A near-infrared fluoride sensor based on a substituted naphthalenediimide–anthraquinone conjugate Tetrahedron Lett. 56 4762

    Article  CAS  Google Scholar 

  35. Poulsen J R and Birks J W 1989 Photoreduction fluorescence detection of quinones in high-performance liquid chromatography Anal. Chem. 61 2267

    Article  CAS  Google Scholar 

  36. Sood D, Kumar N, Singh A, Tomar V, Dass S K and Chandra R 2019 Deciphering the binding mechanism of noscapine with lysozyme: biophysical and chemoinformatic approaches ACS Omega 4 16233

    Article  CAS  Google Scholar 

  37. Inoue H, Hida M, Nakashima N and Yoshihara K 1982 Picosecond fluorescence lifetimes of anthraquinone derivatives. Radiationless deactivation via intra-and intermolecular hydrogen bonds Open J. Phys. Chem. 86 3184

    CAS  Google Scholar 

  38. Jung H S, Kim H J, Vicens J and Kim J S 2009 A new fluorescent chemosensor for F based on inhibition of excited-state intramolecular proton transfer Tetrahedron Lett. 50 983

    Article  CAS  Google Scholar 

  39. Maity D, Chakraborty A, Gunupuru R and Paul P 2011 Calix[4] arene based molecular sensors with pyrene as fluoregenic unit: effect of solvent in ion selectivity and colorimetric detection of fluoride Inorg. Chim. Acta 372 126

    CAS  Google Scholar 

  40. Chawla H M, Shrivastava R and Sahu S N 2008 A new class of functionalized calix [4] arenes as neutral receptors for colorimetric detection of fluoride ions New J. Chem. 32 1999

    CAS  Google Scholar 

  41. Qureshi N, Yufit D S, Steed K M, Howard J A and Steed J W 2014 Hydrogen bonding effects in anion binding calixarenes CrystEngComm 16 8413

    Article  CAS  Google Scholar 

  42. Wang D X and Wang M X 2013. Anion-π interactions: generality, binding strength, and structure J. Am. Chem. Soc. 135 892

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the financial assistance provided by DST-SERB, New Delhi through the project scheme SERB REF. No EMR/2016/001958. Manoj Vora gratefully acknowledges the financial support received from UGC in the form of Rajiv Gandhi National Fellowship, RGNF-JRF (RGNF-2017-18-SC-GUJ-47048). V. K. Jain would like to acknowledge UGC-Mid Career Award for financial assistance (19-213/2018-BSR). Anita Kongor gratefully acknowledges the financial assistance provided by the Council of Scientific & Industrial Research (CSIR), New Delhi for Research Associateship Fellowship (File No. 09/070 (0073) 2020 EMR-I). Manthan K. Panchal gratefully acknowledges Human Resource Development Group - Council of Scientific & Industrial Research (CSIR), New Delhi for Research Associateship Fellowship (File No. 09/70 (0064) 2K19 EMR-I). The authors also acknowledge the Central Salt & Marine Chemicals Research Institute (Bhavnagar), Oxygen Healthcare-Ahmedabad (O2h), Sophisticated Analytical Instrument Facility (Panjab University) and Gujarat Forensic Sciences University (Gandhinagar), for providing instrumental facilities and UGC Infonet & Information and Library Network (INFLIBNET) (Ahmedabad) for e-journals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VINOD JAIN.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VORA, M., KONGOR, A., PANCHAL, M. et al. A highly selective anthraquinone appended oxacalixarene receptor for fluorescent ICT sensing of F ions: an experimental and computational study. J Chem Sci 132, 156 (2020). https://doi.org/10.1007/s12039-020-01862-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01862-6

Keywords

Navigation