Skip to main content
Log in

A Significant Fluorescent Aptamer Sensor Based on Carbon Dots and Graphene Oxide for Highly Selective Detection of Progesterone

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, a fluorescent aptamer sensor was constructed based on the carbon dots (CDs) and graphene oxide (GO). This sensor combines the excellent fluorescence performance of CDs with the high specificity of aptamer, which can detect progesterone (P4) with high sensitivity and selectivity. In the absence of P4, the CDs-aptamer system and GO form a fluorescence resonance energy transfer process (FRET), which quenches the fluorescence of the CDs. When P4 is added, the aptamer specifically binds to it, resulting the fluorescence of the CDs is recovered. At optimal conditions, the fluorescence intensity recovered by the CDs has a linear relationship with the concentration of P4 in the range of 0.1–120 nM and the detection limit is 3.3 × 10–11 M. Besides, the sensor has satisfactory detection results of P4 in milk, indicating that constructed method has enormous potential for application in food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Unpublished data.

Code Availability

Not applicable.

References

  1. Ynsa MD, Ager FJ, Millan JC, Gomez-Zubelbia MA, Pinheiro T (2004) Effect of hormone replacement therapy on the elemental contents of uterine tissue. Biol Trace Elem Res 101(1):37–46. https://doi.org/10.1385/bter:101:1:37

    Article  CAS  PubMed  Google Scholar 

  2. Lishko PV, Botchkina IL, Kirichok Y (2011) Progesterone activates the principal Ca2+ channel of human sperm. Nature 471(7338):387–391. https://doi.org/10.1038/nature09767

    Article  CAS  PubMed  Google Scholar 

  3. Ricanyova J, Gadzala-Kopciuch R, Reiffova K, Bazel Y, Buszewski B (2010) Molecularly imprinted adsorbents for preconcentration and isolation of progesterone and testosterone by solid phase extraction combined with HPLC. Adsorption J Int Adsorption Soc 16(4–5):473–483. https://doi.org/10.1007/s10450-010-9265-7

    Article  CAS  Google Scholar 

  4. Sherwin BB (1999) Progestogens used in menopause - Side effects mood and qualify of life. J Reprod Med 44(2):227–232

    CAS  PubMed  Google Scholar 

  5. Greendale GA, Reboussin BA, Hogan P, Barnabei VM, Shumaker S, Johnson S, Barrett-Connor E, Estrogen P, Postmenopausal Estrogen/Progestin Interventions Trial Investigators (1998) Symptom relief and side effects of postmenopausal hormones: Results from the postmenopausal estrogen/progestin interventions trial. Obstet Gynecol 92(6):982–988. https://doi.org/10.1016/s0029-7844(98)00305-6

    Article  CAS  PubMed  Google Scholar 

  6. Key TJ, Appleby PN, Reeves GK, Roddam AW, Helzlsouer KJ, Alberg AJ, Rollison DE, Dorgan JF, Brinton LA, Overvad K, Kaaks R, Trichopoulou A, Clavel-Chapelon F, Panico S, Duell EJ, Peeters PHM, Rinaldi S, Riboli E, Fentiman IS, Dowsett M, Manjer J, Lenner P, Hallmans G, Baglietto L, English DR, Giles GG, Hopper JL, Severi G, Morris HA, Koenig K, Zeleniuch-Jacquotte A, Arslan AA, Toniolo P, Shore RE, Krogh V, Micheli A, Berrino F, Muti P, Barrett-Connor E, Laughlin GA, Kabuto M, Akiba S, Stevens RG, Neriishi K, Land CE, Cauley JA, Lui LY, Cummings SR, Gunter MJ, Rohan TE, Strickler HD, Endogenous Hormones and Breast Cancer Collaborative Group (2011) Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105(5):709–722. https://doi.org/10.1038/bjc.2011.254

    Article  CAS  PubMed  Google Scholar 

  7. Andersson AM, Skakkebaek NE (1999) Exposure to exogenous estrogens in food: possible impact on human development and health. Eur J Endocrinol 140(6):477–485. https://doi.org/10.1530/eje.0.1400477

    Article  CAS  PubMed  Google Scholar 

  8. Roelofs JB, Van Eerdenburg F, Hazeleger W, Soede NM, Kemp B (2006) Relationship between progesterone concentrations in milk and blood and time of ovulation in dairy cattle. Anim Reprod Sci 91(3–4):337–343. https://doi.org/10.1016/j.anireprosci.2005.04.015

    Article  CAS  PubMed  Google Scholar 

  9. Farlow DW, Xu X, Veenstra TD (2010) Consumption of Cow’s Milk and Possible Risk of Breast Cancer. Breast Care 5(1):44–46. https://doi.org/10.1159/000277938

    Article  Google Scholar 

  10. Decheng S, Xia F, Zhiming X, Shulin W, Shi W, Peilong W (2021) Trace analysis of progesterone and 21 progestins in milk by ultra-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry. Food Chem 361:130115. https://doi.org/10.1016/j.foodchem.2021.130115

    Article  CAS  PubMed  Google Scholar 

  11. Tschmelak J, Kappel N, Gauglitz G (2005) TIRF-based biosensor for sensitive detection of progesterone in milk based on ultra-sensitive progesterone detection in water. Anal Bioanal Chem 382(8):1895–1903. https://doi.org/10.1007/s00216-005-3261-x

    Article  CAS  PubMed  Google Scholar 

  12. Contreras-Jimenez G, Eissa S, Ng A, Alhadrami H, Zourob M, Siaj M (2015) Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal Chem 87(2):1075–1082. https://doi.org/10.1021/ac503639s

    Article  CAS  PubMed  Google Scholar 

  13. Kreuzer MP, McCarthy R, Pravda M, Guilbault GG (2007) Development of Electrochemical Immunosensor for Progesterone Analysis in Milk. Anal Lett 37(5):943–956. https://doi.org/10.1081/al-120030289

    Article  Google Scholar 

  14. Zan GT, Wu T, Zhang ZL, Li J, Zhou JC, Zhu F, Chen HX, Wen M, Yang XC, Peng XJ, ChenJ, Wu QS (2022) Bioinspired Nanocomposites with Self-Adaptive Stress Dispersion for Super-Foldable Electrodes. Adv Sci 9(3):2103714. https://doi.org/10.1002/advs.202103714

    Article  CAS  Google Scholar 

  15. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757. https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  16. Zan GT, Wu T, Zhu F, He PF, Cheng YP, Chai SS, Wang Y, Huang XF, Zhang WX, Wan Y, Peng XJ, Wu QS (2021) A Biomimetic Conductive Super-foldable Material. Matter 4(10):3232–3247. https://doi.org/10.1016/j.matt.2021.07.021

    Article  CAS  Google Scholar 

  17. Zhang Y-F, Maimaiti H, Zhang B (2017) Preparation of cellulose-based fluorescent carbon nanoparticles and their application in trace detection of Pb(II). RSC Adv 7(5):2842–2850. https://doi.org/10.1039/c6ra26684c

    Article  CAS  Google Scholar 

  18. Chai SS, Zan GT, Dong KZ, Wu T, Wu QS (2021) Approaching Superfoldable Thickness-Limit Carbon Nanofiber Membranes Transformed from Water-Soluble PVA. Nano Lett 21(20):8831–8838. https://doi.org/10.1021/acs.nanolett.1c03241

    Article  CAS  PubMed  Google Scholar 

  19. Trapiella-Alfonso L, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2011) Development of a quantum dot-based fluorescent immunoassay for progesterone determination in bovine milk. Biosens Bioelectron 26(12):4753–4759. https://doi.org/10.1016/j.bios.2011.05.044

    Article  CAS  PubMed  Google Scholar 

  20. Cao L, Yu L, Yue J, Zhang Y, Ge M, Li L, Yang R (2020) Yellow-emissive carbon dots for “off-and-on” fluorescent detection of progesterone. Mater Lett 271:127760. https://doi.org/10.1016/j.matlet.2020.127760

    Article  CAS  Google Scholar 

  21. Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y (2015) Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 44(5):1240–1256. https://doi.org/10.1039/c4cs00357h

    Article  CAS  PubMed  Google Scholar 

  22. Mairal T, Oezalp VC, Sanchez PL, Mir M, Katakis I, O’Sullivan CK (2008) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390(4):989–1007. https://doi.org/10.1007/s00216-007-1346-4

    Article  CAS  PubMed  Google Scholar 

  23. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Yan H, Wang K, Tan W, Zhou X (2007) Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation. Anal Chem 79(3):1050–1056. https://doi.org/10.1021/ac061694i

    Article  CAS  PubMed  Google Scholar 

  25. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  26. Siriangkhawut W, Sittichan P, Ponhong K, Chantiratikul P (2017) Stripping voltammetric determination of trace cadmium and lead in Thai organic unpolished rice after ultrasound-assisted digestion. J Food Compos Anal 59:145–152. https://doi.org/10.1016/j.jfca.2017.02.018

    Article  CAS  Google Scholar 

  27. Yao D, Liang A, Yin W, Jiang Z (2014) Resonance light scattering determination of trace bisphenol A with signal amplification by aptamer-nanogold catalysis. Luminescence 29(5):516–521. https://doi.org/10.1002/bio.2578

    Article  CAS  PubMed  Google Scholar 

  28. Li P, Zhou L, Wei J, Yu Y, Yang M, Wei S, Qin Q (2016) Development and characterization of aptamer-based enzyme-linked apta-sorbent assay for the detection of Singapore grouper iridovirus infection. J Appl Microbiol 121(3):634–643. https://doi.org/10.1111/jam.13161

    Article  CAS  PubMed  Google Scholar 

  29. Wu X, Zhao Z, Bai H, Fu T, Yang C, Hu X, Liu Q, Champanhac C, Teng IT, Ye M, Tan W (2015) DNA Aptamer Selected against Pancreatic Ductal Adenocarcinoma for in vivo Imaging and Clinical Tissue Recognition. Theranostics 5(9):985–994. https://doi.org/10.7150/thno.11938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors and bioimaging. Angew Chem Int Ed Engl 52(14):3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  PubMed  Google Scholar 

  31. Chu BC, Wahl GM, Orgel LE (1983) Derivatization of unprotected polynucleotides. Nucleic Acids Res 11(18):6513–6529. https://doi.org/10.1093/nar/11.18.6513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao F, Zhang Q, Li X, Zhang Q, Mao T, Lu Y, Zhang W, Li H (2016) Comparison of standard addition and conventional isotope dilution mass spectrometry for the quantification of endogenous progesterone in milk. Accreditation Qual Assur 21(6):395–401. https://doi.org/10.1007/s00769-016-1236-6

    Article  CAS  Google Scholar 

  33. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Engl 52(30):7800–7804. https://doi.org/10.1002/anie.201301114

    Article  CAS  PubMed  Google Scholar 

  34. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules. Anal Chem 82(13):5511–5517. https://doi.org/10.1021/ac100852z

    Article  CAS  PubMed  Google Scholar 

  35. Xu Z-Q, Lan J-Y, Jin J-C, Gao T, Pan L-L, Jiang F-L, Liu Y (2015) Mechanistic studies on the reversible photophysical properties of carbon nanodots at different pH. Colloids Surf B 130:207–214. https://doi.org/10.1016/j.colsurfb.2015.04.012

    Article  CAS  Google Scholar 

  36. Zhu Y, Xu Z, Gao J, Ji W, Zhang J (2020) An antibody-aptamer sandwich cathodic photoelectrochemical biosensor for the detection of progesterone. Biosens Bioelectron 160:112210. https://doi.org/10.1016/j.bios.2020.112210

    Article  CAS  PubMed  Google Scholar 

  37. Daems D, Lu J, Delport F, Marien N, Orbie L, Aernouts B, Adriaens I, Huybrechts T, Saeys W, Spasic D, Lammertyn J (2017) Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor. Anal Chim Acta 950:1–6. https://doi.org/10.1016/j.aca.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  38. Jimena Monerris M, Javier Arevalo F, Fernandez H, Alicia Zon M, Gabriela Molina P (2012) Integrated electrochemical irnmunosensor with gold nanoparticles for the determination of progesterone. Sens Actuators B Chem 166:586–592. https://doi.org/10.1016/j.snb.2012.03.015

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the financial support by the National Nature Science Foundation of China (No. 21671132).

Author information

Authors and Affiliations

Authors

Contributions

The first author HYC performed the design, operation and data processing of the experiment, and wrote the manuscript. HL carried out the assistance of the experiment and the inspection and modification of the manuscript. YF completed the inspection and modification of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li Li or Yaping Ding.

Ethics declarations

Ethics

The authors declare that they have read the Ethical Responsibilities of Authors carefully, the authors meets its requirements.

Consent to Participate

The authors declare that they consent to participate.

Consent for Publication

The authors declare that they consent to publication.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Lu, H., Yang, J. et al. A Significant Fluorescent Aptamer Sensor Based on Carbon Dots and Graphene Oxide for Highly Selective Detection of Progesterone. J Fluoresc 32, 927–936 (2022). https://doi.org/10.1007/s10895-022-02896-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02896-4

Keywords

Navigation