Skip to main content
Log in

In Silico Studies and Design of Scrupulous Novel Sensor for Nitro Aromatics Compounds and Metal Ions Detection

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A Novel calix[4]pyrrole system bearing carboxylic acid functionality [ABuCP] has been synthesized and its interaction towards various nitroaromatics compounds [NACs] were investigated. ABuCP showed significant color change with 1,3-dinitro benzene (1,3-DNB) in comparison to the solution of other nitroaromatic compounds such as 2,3-dinitro toluene (2,3-DNT), 2,4-dinitro toluene (2,4-DNT), 2,6-dinitro toluene (2,6-DNT), 4-NBB (4-nitrobenzyl bromide) and 4-nitro toluene (4-NT). The ABuCP-1,3-DNB complex produces a red shift in absorption spectra based on charge transfer mediated recognition. Additionally, the density functional theory calculation confirmed the possible mechanism for the binding of 1,3-DNB as a guest is well supported by the calculation of other parameters such as hardness, stabilization energy, softness, electrophilicity index and chemical potential. The TDDFT calculation facilitates the understanding of the proper binding mechanism in reference to experimental results. Additionally we have also developed its derivative which acts as a new fluorescent sensor which can selectively recognize Sr(II) ions. In this view its aminoanthraquinone derivative of calix[4]pyrrole i.e. ABuCPTAA is synthesized which also results in generation of high fluorescence capability sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Availability of Data and Material/ Data Availability

No repository.

References

  1. Senra JD, Malta LFB, da Costa ME, Michel RC, Aguiar LC, Simas AB et al (2009) Hydroxypropyl-α-Cyclodextrin-Capped Palladium Nanoparticles: Active Scaffolds for Efficient Carbon-Carbon Bond Forming Cross-Couplings in Water. Adv Synth Catal 351(14–15):2411–2422

    Article  CAS  Google Scholar 

  2. Rouhi AM (1997) Land Mines-Horrors Begging for Solutions. Chem Eng News 75(10):14–22

    Article  Google Scholar 

  3. Yinon J (2002) Field detection and monitoring of explosives. TrAC, Trends Anal Chem 21(4):292–301

    Article  CAS  Google Scholar 

  4. Arshad N, Janjua NK, Ahmed S, Khan AY, Skibsted LH (2009) Electrochemical investigations of antioxidant interactions with radical anion and dianion of 1, 3-dinitrobenzene. Electrochim Acta 54(26):6184–6189

    Article  CAS  Google Scholar 

  5. Modi K, Panchal U, Patel C, Bhatt K, Dey S, Mishra D et al (2018) Dual in vitro and in silico analysis of thiacalix [4] arene dinaphthalene sulfonate for the sensing of 4-nitrotoluene and 2, 3-dinitrotoluene. New J Chem 42(4):2682–2691

    Article  CAS  Google Scholar 

  6. Chen BB, Liu ZX, Zou HY, Huang CZ (2016) Highly selective detection of 2, 4, 6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst 141(9):2676–2681

    Article  CAS  PubMed  Google Scholar 

  7. Ma Y, Li H, Peng S, Wang L (2012) Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Anal Chem 84(19):8415–8421

    Article  CAS  PubMed  Google Scholar 

  8. Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85(2):496–512

    Article  CAS  PubMed  Google Scholar 

  9. Bähring S, Root HD, Sessler JL, Jeppesen JO (2019) Tetrathiafulvalene-calix [4] pyrrole: a versatile synthetic receptor for electron-deficient planar and spherical guests. Org Biomol Chem 17(10):2594–2613

    Article  PubMed  Google Scholar 

  10. Floriani C (1996) Transition metal complexes as bifunctional carriers of polar organometallics: Their application to large molecule modifications and to hydrocarbon activation. Pure Appl Chem 68(1):1–8

    Article  CAS  Google Scholar 

  11. Steinberg RS, Nayak A, O'Connell C, Burford S, Pekarek A, Chesnut N et al (2020) Sex differences in eligibility for advanced heart failure therapies. Clin Transplant e13839. https://doi.org/10.1111/ctr.13839

  12. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al (2009) Gaussian 09, Revision D. 01, 2009, Gaussian. Inc., Wallingford CT

  13. Walsh ME (2001) Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 54(3):427–438

    Article  CAS  PubMed  Google Scholar 

  14. Bader M, Göen T, Müller J, Angerer J (1998) Analysis of nitroaromatic compounds in urine by gas chromatography–mass spectrometry for the biological monitoring of explosives. J Chromatogr B Biomed Sci Appl 710(1–2):91–99

    Article  CAS  PubMed  Google Scholar 

  15. Khayamian T, Tabrizchi M, Jafari M (2003) Analysis of 2, 4, 6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1, 3, 5-trimethylene-2, 4, 6-trinitramine using negative corona discharge ion mobility spectrometry. Talanta 59(2):327–333

    Article  CAS  PubMed  Google Scholar 

  16. Jimenez A, Navas M (2004) Chemiluminescence detection systems for the analysis of explosives. J Hazard Mater 106(1):1–8

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Ivanova LV, Ivanov MV, Mirzaei S, Timerghazin QK, Reid SA et al (2018) An Electron-Rich Calix [4] Arene-Based Receptor With Unprecedented Binding Affinity For Nitric Oxide. Chemistry

  18. Hamzi I, Fray M, Abidi R, Barhoumi-Slimi T (2019) Synthesis, characterization and conformational study of new α, β-unsaturated acylhydrazones based on calix [4] arene backbone. J Mol Struct 1185:78–84

    Article  CAS  Google Scholar 

  19. Panchal M, Kongor A, Athar M, Modi K, Patel C, Dey S et al (2020) Structural motifs of oxacalix [4] arene for molecular recognition of nitroaromatic explosives: Experimental and computational investigations of host-guest complexes. J Mol Liq 306:112809

  20. Park JS, Le Derf F, Bejger CM, Lynch VM, Sessler JL, Nielsen KA et al (2010) Positive homotropic allosteric receptors for neutral guests: annulated tetrathiafulvalene–calix [4] pyrroles as colorimetric chemosensors for nitroaromatic explosives. Chem A Eur J 16(3):848–854

  21. Zhu W, Park JS, Sessler JL, Gaitas A (2011) A colorimetric receptor combined with a microcantilever sensor for explosive vapor detection. Appl Phys Lett 98(12):123501

  22. Kim D-S, Lynch VM, Nielsen KA, Johnsen C, Jeppesen JO, Sessler JL (2009) A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. Anal Bioanal Chem 395(2):393–400

    Article  CAS  PubMed  Google Scholar 

  23. Bhatt KD, Gupte HS, Makwana BA, Vyas DJ, Maity D, Jain VK (2012) Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe (III), Co (II) and Cu (II). J Fluoresc 22(6):1493–1500

    Article  CAS  PubMed  Google Scholar 

  24. Bhatt KD, Makwana BA, Vyas DJ, Mishra DR, Jain VK (2014) Selective recognition by novel calix system: ICT based chemosensor for metal ions. J Lumin 146:450–457

    Article  CAS  Google Scholar 

  25. Bhatt KD, Shah HD, Modi KM, Narechania MB, Patel C (2019) Calix [4] pyrrole virtuous sensor: a selective and sensitive recognition for Pb (II) ions by spectroscopic and computational study. Supramol Chem 31(4):268–282

    Article  CAS  Google Scholar 

  26. Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK, Shah H (2016) Turn-on fluorescence probe for selective detection of Hg (II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample. Chin Chem Lett 27(5):731–737

    Article  CAS  Google Scholar 

  27. Kim SK, Sessler JL (2014) Calix [4] pyrrole-based ion pair receptors. Acc Chem Res 47(8):2525–2536

    Article  CAS  PubMed  Google Scholar 

  28. Lee C-H (2011) Versatilities of calix [4] pyrrole based anion receptors. Bull Korean Chem Soc 32(3):768–778

    Article  CAS  Google Scholar 

  29. Matthews SE, Beer PD (2005) Calixarene-based anion receptors. Supramol Chem 17(6):411–435

    Article  CAS  Google Scholar 

  30. Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48(22):3924–3977

    Article  CAS  Google Scholar 

  31. Wheate NJ, Buck DP, Day AI, Collins JG (2006) Cucurbit [n] uril binding of platinum anticancer complexes. Dalton Trans 3:451–458

  32. Mutihac L, Buschmann H-J, Mutihac R-C, Schollmeyer E (2005) Complexation and separation of amines, amino acids, and peptides by functionalized calix [n] arenes. J Incl Phenom Macrocycl Chem 51(1–2):1–10

    Article  CAS  Google Scholar 

  33. Lehn J-M (2002) Toward self-organization and complex matter. Science 295(5564):2400–2403

    Article  CAS  PubMed  Google Scholar 

  34. Paulini R, Müller K, Diederich F (2005) Orthogonal multipolar interactions in structural chemistry and biology. Angew Chem Int Ed 44(12):1788–1805

    Article  CAS  Google Scholar 

  35. Kongor A, Panchal M, Athar M, Makwana B, Sindhav G, Jha P et al (2018) Synthesis and modeling of calix [4] pyrrole wrapped Au nanoprobe for specific detection of Pb (II): Antioxidant and radical scavenging efficiencies. J Photochem Photobiol, A 364:801–810

    Article  CAS  Google Scholar 

  36. Panchal M, Athar M, Jha P, Kongor A, Mehta V, Bhatt K et al (2016) Turn-off fluorescence probe for the selective determination of pendimethalin using a mechanistic docking model of novel oxacalix [4] arene. RSC Adv 6(58):53573–53577

    Article  CAS  Google Scholar 

  37. Darjee SM, Bhatt K, Kongor A, Panchal MK, Jain VK (2017) Thiacalix [4] arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study. Chem Phys Lett 667:137–145

    Article  CAS  Google Scholar 

  38. Linn MM, Poncio DC, Machado VG (2007) An anionic chromogenic sensor based on the competition between the anion and a merocyanine solvatochromic dye for calix [4] pyrrole as a receptor site. Tetrahedron Lett 48(26):4547–4551

    Article  CAS  Google Scholar 

  39. Kaur S, Hwang H, Lee JT, Lee C-H (2013) Displacement-based, chromogenic calix [4] pyrrole–indicator complex for selective sensing of pyrophosphate anion. Tetrahedron Lett 54(29):3744–3747

    Article  CAS  Google Scholar 

  40. Suksai C, Tuntulani T (2003) Chromogenic anion sensors. Chem Soc Rev 32(4):192–202

    Article  CAS  PubMed  Google Scholar 

  41. Farinha AS, Fernandes MR, Tomé AC (2014) Chromogenic anion molecular probes based on β, β’-disubstituted calix [4] pyrroles. Sens Actuators, B Chem 200:332–338

    Article  CAS  Google Scholar 

  42. Bhatt KD, Shah HD, Panchal M (2017) A switch-off fluorescence probe towards Pb (II) and cu (II) ions based on a calix [4] pyrrole bearing amino-quinoline group. Luminescence 32(8):1398–1404

    Article  CAS  PubMed  Google Scholar 

  43. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  44. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al (2016) Gaussian 16 Rev. B. 01, Wallingford, CT

  45. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et al (2013) Gaussian 09 Rev. A. 02. Wallingford: Gaussian. Inc

  46. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics 4(1):1–17

    Article  Google Scholar 

  47. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA et al (2006) Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein− ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  48. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

  49. Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, (pp. 43–43): IEEE

  50. Blanchard DJ, Manderville RA (2016) An internal charge transfer-DNA platform for fluorescence sensing of divalent metal ions. Chem Commun 52(61):9586–9588

    Article  CAS  Google Scholar 

  51. Vora M, Kongor A, Panchal M, Athar M, Verma A, Panjwani F et al (2020) A highly selective anthraquinone appended oxacalixarene receptor for fluorescent ICT sensing of F− ions: an experimental and computational study. J Chem Sci 132(1):1–10

    Article  Google Scholar 

  52. Darjee SM, Modi KM, Panchal U, Patel C, Jain VK (2017) Highly selective and sensitive fluorescent sensor: Thiacalix [4] arene-1-naphthalene carboxylate for Zn2+ ions. J Mol Struct 1133:1–8

    Article  CAS  Google Scholar 

  53. Tedesco A, Oliveira D, Lacava Z, Azevedo R, Lima E, Morais P (2004) Investigation of the binding constant and stoichiometry of biocompatible cobalt ferrite-based magnetic fluids to serum albumin. J Magn Magn Mater 272:2404–2405

    Article  Google Scholar 

  54. Patra S, Paul P (2009) Synthesis, characterization, electrochemistry and ion-binding studies of ruthenium (II) bipyridine receptor molecules containing calix [4] arene-azacrown as ionophore. Dalton Trans 40:8683–8695

  55. Sortino S, Petralia S, Pignataro B, Marletta G, Conoci S, Valli L (2003) Langmuir-Schäfer films of a new calix [4] pyrrole-based macrocycle exhibiting induced chirality upon binding with chiral alcohol vapours. New J Chem 27(3):615–618

    Article  CAS  Google Scholar 

  56. Lee JY, Root HD, Ali R, An W, Lynch VM, Bähring S et al (2020) Ratiometric turn-on fluorophore displacement ensembles for nitroaromatic explosives detection. J Am Chem Soc 142(46):19579–19587

    Article  CAS  PubMed  Google Scholar 

  57. Liu K, He L, He X, Guo Y, Shao S, Jiang S (2007) Calix [4] pyrrole–TCBQ assembly: a signal magnifier of TCBQ for colorimetric determining amino acids and amines. Tetrahedron Lett 48(24):4275–4279

    Article  CAS  Google Scholar 

  58. Houk KN (1975) Frontier molecular orbital theory of cycloaddition reactions. Acc Chem Res 8(11):361–369

    Article  CAS  Google Scholar 

  59. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100(31):12974–12980

    Article  CAS  Google Scholar 

  60. Dizaji NJ, Nouri A, Zahedi E, Musavi SM, Nouri A (2017) Regioselectivity of 1, 3-dipolar cycloadditions between aryl azides and an electron-deficient alkyne through DFT reactivity descriptors. Res Chem Intermed 43(2):767–782

    Article  CAS  Google Scholar 

  61. Fakhari S, Nouri A, Jamzad M, Arab-Salmanabadi S, Falaki F (2021) Investigation of inclusion complex of metformin into selective cyclic peptides as novel drug delivery system: Structure, electronic properties, AIM, and NBO study via DFT. J Chin Chem Soc 68(1):67–75

    Article  CAS  Google Scholar 

  62. Suvitha A, Venkataramanan NS, Mizuseki H, Kawazoe Y, Ohuchi N (2010) Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit [n] urils n= 5 to 8. J Incl Phenom Macrocycl Chem 66(3):213–218

    Article  CAS  Google Scholar 

  63. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1(1–6):104–113

  64. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117(5):369–377

    Article  CAS  Google Scholar 

  65. Scrocco E, Tomasi J (1978) Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. In Adv Quantum Chem 11:115–193. Elsevier

  66. Luque FJ, López JM, Orozco M (2000) Perspective on Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor Chem Accounts 103(3):343–345

  67. Okulik N, Jubert AH (2005) Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design 4(1):17–30

    CAS  Google Scholar 

  68. Miyaji H, Kim H-K, Sim E-K, Lee C-K, Cho W-S, Sessler JL et al (2005) Coumarin-strapped calix [4] pyrrole: a fluorogenic anion receptor modulated by cation and anion binding. J Am Chem Soc 127(36):12510–12512

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

ALD Synthesized molecules and purified. NPP characterised and interpreted the data. JHP Wrote data in manuscript (Editor) form using structure software’s. KMM analysed the application in silico using software. KDB major contributor in writing the manuscript and analysis the structural data.

Corresponding authors

Correspondence to Krunal M. Modi or Keyur D. Bhatt.

Ethics declarations

Ethics Approval/Declarations

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflicts of Interest/Competing Interests

This research received no external funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, A.L., Patel, N.P., Parikh, J.H. et al. In Silico Studies and Design of Scrupulous Novel Sensor for Nitro Aromatics Compounds and Metal Ions Detection. J Fluoresc 32, 483–504 (2022). https://doi.org/10.1007/s10895-021-02866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02866-2

Keywords

Navigation