Skip to main content

Advertisement

Log in

Electronic Structure, Optical Properties and Quantum Chemical Investigation on Synthesized Coumarin Derivative in Liquid Media for Optoelectronic Devices

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The newly synthesized 3,3′-((3-bromo-4-methoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (3-BMH) derivative have been investigated in a selected number of organic solvents having different polarity and refractive index at room temperature. From the absorption and emission spectra of the synthesized derivative in studied solvents showed bathochromic shift in both the cases (Uv-vis and emission spectra), the ground state dipole moment (μg) and excited state dipole moment (μe) were obtained by implementing [Chamma-Kwaski-Villate, Bakhshiev, Lippert-Mataga, McRay and Suppan] solvatochromic shift techniques depending on solvent polarity parameters. The larger dipole moment value is observed in the excited state as compared to the ground state dipole moment and this discrepancy in the dipole moment value is due to polar nature of the molecule. From the results of both experimental and theoretical energy gap is found to 3.14 eV in average, from this, it can be concluded that the 3-BMH molecule showed a good agreement with the semiconducting material bandgap so that the 3-BMH molecule can be used as a potential material for the optoelectronic application. Also, from results of quantum chemical studies, the electrostatic potential maps studies reveal the molecule is how much stable it describes the defining reactivity of the molecule towards positively and negatively charged reactants, size, shape, the location of nucleophilic and electrophilic sites. Further, the optoelectronic properties were investigated the CIE, CRI, color purity and CCT results of the 3-BMH in all studied solvents revels that this compound exhibits blue emission (National television standard committee system (NTSC) for the ideal blue chromacity coordinate 0.14, 0.08) and from the CIE results show the color emission of the molecule in order to design the desired OLED device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu X, Cole JM, Waddell PG, Lin TC, Radia J, Zeidler A (2012) Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. J Phys Chem A 116:727–737. https://doi.org/10.1021/jp209925y

    Article  CAS  PubMed  Google Scholar 

  2. Ammar H, Fery-Forgues S, El Gharbi R (2003) UV/Vis absorption and fluorescence spectroscopic study of novel symmetrical biscoumarin dyes. Dyes Pigments 57:259–265. https://doi.org/10.1016/S0143-7208(03)00028-7

    Article  CAS  Google Scholar 

  3. Xin JJ, Li J, Zhang ZD, Hu XB, Li MK (2015) Biscoumarin derivatives: synthesis, crystal structure, theoretical studies and induced apoptosis activity on bladder urothelial cancer cell. J Mol Struct 1084:200–206. https://doi.org/10.1016/j.molstruc.2014.12.024

    Article  CAS  Google Scholar 

  4. Siddiqui ZN, Farooq F (2011) Zn(proline)2: a novel catalyst for the synthesis of dicoumarols. Catal Sci Technol 1:810. https://doi.org/10.1039/c1cy00110h

    Article  CAS  Google Scholar 

  5. Li J, Lv CW, Li XJ, Qu D, Hou Z, Jia M, Luo XX, Li X, Li MK (2015) Synthesis of biscoumarin and dihydropyran derivatives and evaluation of their antibacterial activity. Molecules 20:17469–17482. https://doi.org/10.3390/molecules200917469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chauthe SK, Mahajan S, Rachamalla M, Tikoo K, Singh IP (2015) Synthesis and evaluation of linear furanocoumarins as potential anti-breast and anti-prostate cancer agents. Med Chem Res 24:2476–2484. https://doi.org/10.1007/s00044-014-1312-6

    Article  CAS  Google Scholar 

  7. Onishi A, Sugiyama D, Kumagai S, Morinobu A (2013) Cancer incidence in systemic sclerosis: meta-analysis of population-based cohort studies. Arthritis Rheum 65:1913–1921. https://doi.org/10.1002/art.37969

    Article  PubMed  Google Scholar 

  8. Ammar H, Abid S, Fery-Forgues S (2008) Synthesis and spectroscopic study of new biscoumarin dyes based on 7-(4-methylcoumarinyl) diesters. Dyes Pigments 78:1–7. https://doi.org/10.1016/j.dyepig.2007.09.008

    Article  CAS  Google Scholar 

  9. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282. https://doi.org/10.1016/S0040-4039(00)83996-9

    Article  CAS  Google Scholar 

  10. Moog RS, Kim DD, Oberle JJ, Ostrowski SG (2004) Solvent effects on electronic transitions of highly dipolar dyes: a comparison of three approaches. J Phys Chem A 108:9294–9301. https://doi.org/10.1021/jp0486088

    Article  CAS  Google Scholar 

  11. Nolan KA, Doncaster JR, Dunstan MS, Scott KA, Frenkel AD, Siegel D, Ross D, Barnes J, Levy C, Leys D, Whitehead RC, Stratford IJ, Bryce RA (2009) Synthesis and biological evaluation of coumarin-based inhibitors of NAD(P)H: Quinone oxidoreductase-1 (NQO1). J Med Chem 52:7142–7156. https://doi.org/10.1021/jm9011609

    Article  CAS  PubMed  Google Scholar 

  12. Manjappa KB, Jhang WF, Huang SY, Yang DY (2014) Microwave-promoted, metal- and catalyst-free decarboxylative α,β-difunctionlization of secondary amino acids via pseudo-four-component reactions. Org Lett 16:5690–5693. https://doi.org/10.1021/ol5027574

    Article  CAS  PubMed  Google Scholar 

  13. Siddiqui ZN, Khan T (2013) Sulfuric acid-modified PEG-6000 (PEG-OSO3H): a biodegradable, reusable solid acid catalyst for highly efficient and eco-friendly synthesis of novel bis-Knoevenagel products under solvent-free conditions. Tetrahedron Lett 54:3759–3764. https://doi.org/10.1016/j.tetlet.2013.05.012

    Article  CAS  Google Scholar 

  14. Díaz MS, Freile ML, Gutiérrez MI (2009) Solvent effect on the UV/Vis absorption and fluorescence spectroscopic properties of berberine. Photochem Photobiol Sci 8:970. https://doi.org/10.1039/b822363g

    Article  CAS  PubMed  Google Scholar 

  15. Nowak K (2014) A solvatochromic study of N-[4-(9-acridinylamino)-3-methoxyphenyl]methanesulfonamide hydrochloride: an experimental and theoretical approach. Spectrochim Acta Part A Mol Biomol Spectrosc 130:208–213. https://doi.org/10.1016/J.SAA.2014.03.004

    Article  CAS  Google Scholar 

  16. Warde U, Sekar N (2017) Solvatochromic benzo [ h ] coumarins : synthesis , solvatochromism , NLO and DFT study. Opt Mater (Amst) 72:346–358. https://doi.org/10.1016/j.optmat.2017.06.027

    Article  CAS  Google Scholar 

  17. Mande P, Mathew E, Chitrambalam S, Joe IH, Sekar N (2017) NLO properties of 1, 4-naphthoquinone, Juglone and Lawsone by DFT and Z-scan technique – a detailed study. Opt Mater (Amst) 72:549–558. https://doi.org/10.1016/J.OPTMAT.2017.06.058

    Article  CAS  Google Scholar 

  18. Gülseven Sıdır Y, Sıdır İ, Berber H, Türkoğlu G (2014) Solvatochromic behavior and electronic structure of some symmetric 2-aminophenol Schiff base derivatives. J Mol Liq 199:57–66. https://doi.org/10.1016/J.MOLLIQ.2014.08.018

    Article  Google Scholar 

  19. Joshi S, Bhattacharjee R, Varma YT, Pant DD (2013) Estimation of ground and excited state dipole moments of quinidine and quinidine dication: experimental and numerical methods. J Mol Liq 179:88–93. https://doi.org/10.1016/J.MOLLIQ.2012.11.023

    Article  CAS  Google Scholar 

  20. Sidir I, Gülseven Sidir Y, Demiray F, Berber H (2014) Estimation of ground and excited states dipole moments of α-hydroxy phenyl hydrazone derivatives: experimental and quantum chemical methods. J Mol Liq 197:386–394. https://doi.org/10.1016/j.molliq.2014.06.001

    Article  CAS  Google Scholar 

  21. Joshi S, Bhattacharjee R, Sakhuja R, Pant DD (2015) Estimation of ground and excited-state dipole moments of synthesized coumarin derivative , ( S ) - ( 1- (( 7-hydroxy-2-oxo-2 H -chromen-4-yl ) cabonylamino ) -3-phenylpropanoate from a solvatochromic shift and theoretical methods. J Mol Liq 209:219–223. https://doi.org/10.1016/j.molliq.2015.05.053

  22. Margar SN, Rhyman L, Ramasami P, Sekar N (2016) Fluorescent difluoroboron-curcumin analogs: an investigation of the electronic structures and photophysical properties. Spectrochim Acta Part A Mol Biomol Spectrosc 152:241–251. https://doi.org/10.1016/J.SAA.2015.07.064

    Article  CAS  Google Scholar 

  23. Tathe AB, Sekar N (2016) NLOphoric red emitting Bis Coumarins with O-BF2-O core - synthesis, Photophysical properties and DFT studies. J Fluoresc 26:471–486. https://doi.org/10.1007/s10895-015-1733-8

    Article  CAS  PubMed  Google Scholar 

  24. Erande Y, Sreenath MC, Chitrambalam S, Joe IH, Sekar N (2017) Spectroscopic , DFT and Z-scan supported investigation of dicyanoisophorone based push-pull NLOphoric styryl dyes. Opt Mater (Amst) 66:494–511. https://doi.org/10.1016/j.optmat.2017.03.005

    Article  CAS  Google Scholar 

  25. Guggemos N, Slavíček P, Kresin VV (2015) Electric dipole moments of Nanosolvated acid molecules in water clusters. Phys Rev Lett 114:043401. https://doi.org/10.1103/PhysRevLett.114.043401

    Article  CAS  PubMed  Google Scholar 

  26. Raikar US, Renuka CG, Nadaf YF, Mulimani BG (2006) Steady-state, time-resolved fluorescence polarization behaviour and determination of dipole moments of coumarin laser dye. J Mol Struct 787:127–130

    Article  CAS  Google Scholar 

  27. Sıdır YG, Sıdır İ (2015) Solvatochromic fluorescence of 4-alkoxybenzoic acid liquid crystals: ground and excited state dipole moments of monomer and dimer structures determined by solvatochromic shift methods. J Mol Liq 211:591–603. https://doi.org/10.1016/j.molliq.2015.07.053

    Article  CAS  Google Scholar 

  28. Renuka CG, Shivashankar K, Boregowda P, Bellad SS, Muregendrappa MV, Nadaf YF (2017) An experimental and computational study of 2-(3-Oxo-3H-benzo[f] chromen-1-ylmethoxy)-benzoic acid methyl Ester. J Solut Chem 46:1535–1555. https://doi.org/10.1007/s10953-017-0661-4

    Article  CAS  Google Scholar 

  29. Goel A, Kumar V, Singh SP, Sharma A, Prakash S, Singh C, Anand RS (2012) Non-aggregating solvatochromic bipolar benzo[f]quinolines and benzo[a]acridines for organic electronics. J Mater Chem 22:14880. https://doi.org/10.1039/c2jm31052j

    Article  CAS  Google Scholar 

  30. Singh V, Mishra AK (2016) White light emission from a mixture of pomegranate extract and carbon nanoparticles obtained from the extract. J Mater Chem C 4:3131–3137. https://doi.org/10.1039/c6tc00480f

    Article  CAS  Google Scholar 

  31. Chang DW, Ko S-J, Kim JY, Dai L, Baek JB (2012) Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synth Met 162:1169–1176. https://doi.org/10.1016/J.SYNTHMET.2012.04.016

    Article  CAS  Google Scholar 

  32. Zampetti A, Minotto A, Squeo BM, Gregoriou VG, Allard S, Scherf U, Chochos CL, Cacialli F (2017) Highly efficient solid-state near-infrared organic light-emitting diodes incorporating A-D-A dyes based on α,β-unsubstituted “bODIPY” moieties. Sci Rep 7:1–7. https://doi.org/10.1038/s41598-017-01785-2

    Article  CAS  Google Scholar 

  33. Kumar S, Puttaraju B, Patil S (2016) A deep-blue electroluminescent device based on a Coumarin derivative. Chempluschem 81:384–390. https://doi.org/10.1002/cplu.201500572

    Article  CAS  Google Scholar 

  34. Alphonse R, Varghese A, George L, Nizam A (2016) Estimation of ground state and excited state dipole moments of a novel Schiff base derivative containing 1, 2, 4-triazole nucleus by solvatochromic method. J Mol Liq 215:387–395. https://doi.org/10.1016/j.molliq.2015.12.050

    Article  CAS  Google Scholar 

  35. Panicker CY, Varghese HT, Nayak PS, Narayana B, Sarojini BK, Fun HK, War JA, Srivastava SK, van Alsenoy C (2015) Infrared spectrum, NBO, HOMO-LUMO, MEP and molecular docking studies (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one. Spectrochim Acta - Part A Mol Biomol Spectrosc 148:18–28. https://doi.org/10.1016/j.saa.2015.03.065

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJD (2009) Gaussian, Inc., Wallingford

  37. Brout R, Thomas H (1967) Molecular field theory, the Onsager reaction field and the spherical model. Phys Phys Fiz 3:317–329. https://doi.org/10.1103/PhysicsPhysiqueFizika.3.317

    Article  CAS  Google Scholar 

  38. Kamlet MJ, Abboud JLM, Taft RW (2007) An Examination of Linear Solvation Energy Relationships. John Wiley & Sons, Ltd, pp 485–630

  39. Kamlet MJ, Abboud JL, Taft RW (1977) The Solvatochromic comparison method. 6. The π* scale of solvent Polarities1. J Am Chem Soc 99:6027–6038. https://doi.org/10.1021/ja00460a031

    Article  CAS  Google Scholar 

  40. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .Pi.*, .Alpha., and .Beta., and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887. https://doi.org/10.1021/jo00165a018

    Article  CAS  Google Scholar 

  41. Spektroskopiya NB-O i, 1964 undefined Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in 2-component solutions. 7. Theory (general. MEZHDUNARODNAYA Kn 39 …

  42. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the Dipolemoments of excited molecules. Bull Chem Soc Jpn 29:465–470. https://doi.org/10.1246/bcsj.29.465

    Article  CAS  Google Scholar 

  43. McRae EG (1954) Theory of solvent effects on molecular electronic spectra. Frequency shifts. J Phys Chem 61:1957–1572. https://doi.org/10.1021/j150551a012

    Article  Google Scholar 

  44. Suppan P (1983) Excited-state dipole moments from absorption/fluorescence solvatochromic ratios. Chem Phys Lett 94:272–275. https://doi.org/10.1016/0009-2614(83)87086-9

    Article  CAS  Google Scholar 

  45. Edward JT (1970) Molecular volumes and the stokes-Einstein equation, vol 47, pp 261–270

    Google Scholar 

  46. Li Y, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochim Biophys Acta Bioenerg 1817:1292–1298. https://doi.org/10.1016/J.BBABIO.2012.02.026

    Article  CAS  Google Scholar 

  47. Y TV, Agarwal DS, Sarmah A et al (2017) Solvent effects on the absorption and emission spectra of novel (E)-4-((4-(heptyloxy)phenyl)diazenyl)benzyl (((9H-fluoren-9-yl)methoxy)carbonyl)-d-alaninate (Fmoc-al-az): determination of dipole moment by experimental and theoretical study. J Mol Struct 1129:248–255. https://doi.org/10.1016/j.molstruc.2016.09.078

    Article  CAS  Google Scholar 

  48. Baumann R, Ferrante C, Kneuper E, Deeg FW, Bräuchle C (2003) Influence of confinement on the solvation and rotational dynamics of coumarin 153 in ethanol. J Phys Chem A 107:2422–2430. https://doi.org/10.1021/jp027172y

    Article  CAS  Google Scholar 

  49. Sıdır İ, Sıdır YG, Berber H, Demiray F (2015) Emerging ground and excited state dipole moments and external electric field effect on electronic structure. A solvatochromism and theoretical study on 2-((phenylimino)methyl)phenol derivatives. J Mol Liq 206:56–67. https://doi.org/10.1016/j.molliq.2015.01.056

    Article  CAS  Google Scholar 

  50. Sıdır İ, Gülseven Sıdır Y (2015) Estimation of ground and excited state dipole moments of oil red O by solvatochromic shift methods. Spectrochim Acta Part A Mol Biomol Spectrosc 135:560–567. https://doi.org/10.1016/j.saa.2014.07.049

    Article  CAS  Google Scholar 

  51. Luo Q, Zhang H, Zhao Y, Wang J, Yu T (2018) Synthesis and characterization of 9,10-[di-p-(7-diethylamino- coumarin-3-yl) thiopheneyl]anthracene as fluorescent material. J Sulfur Chem 39:89–98. https://doi.org/10.1080/17415993.2017.1391813

    Article  CAS  Google Scholar 

  52. Sıdır YG, Sıdır İ (2012) Solvent effect on the absorption and fluorescence spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin: determination of ground and excited state dipole moments. Spectrochim Acta Part A Mol Biomol Spectrosc 102:286–296. https://doi.org/10.1016/j.saa.2012.10.018

    Article  CAS  Google Scholar 

  53. Y TV, Joshi S, Pant DD (2013) Solvatochromatic shift of absorption and fl uorescence spectra of 6-methoxyquinoline : estimation of ground and excited state dipole moments. J Mol Liq 179:7–11. https://doi.org/10.1016/j.molliq.2012.11.024

    Article  CAS  Google Scholar 

  54. Varma YT, Pant DD (2016) Interaction of 6-methoxyquinoline with anionic sodium dodecylsulfate micelles: Photophysics and rotational relaxation dynamics at different pH. Spectrochim Acta - Part A Mol Biomol Spectrosc 158:9–17. https://doi.org/10.1016/j.saa.2016.01.004

    Article  CAS  Google Scholar 

  55. Riedel F, Spange S (2012) Solvatochromism of catechol derivatives - Solute/solvent interactions. J Phys Org Chem 25:1261–1268. https://doi.org/10.1002/poc.3003

  56. Miotke M (2017) Solvatochromism of antiinflammatory drug – naproxen sodium Solvatochromism of antiinflammatory drug – naproxen sodium. J Mol Liq 230:129–136. https://doi.org/10.1016/j.molliq.2016.12.094

    Article  CAS  Google Scholar 

  57. Renuka CG, Shivashankar K, Boregowda P, Bellad SS, Muregendrappa MV, Nadaf YF (2017) An experimental and computational study of 2- ( 3-Oxo-. J Solut Chem 46:1535–1555. https://doi.org/10.1007/s10953-017-0661-4

  58. Pramod AG, Renuka CG, Shivashankar K et al (2018) Solvent influence on the photophysical properties of 4-(2-Oxo-2H-benzo[h]chromen-4-ylmethoxy)-benzaldehyde. In: AIP conference proceedings. AIP Publishing LLC, p 130001

  59. Tej Varma Y, Agarwal DS, Sarmah A et al (2017) Solvent effects on the absorption and emission spectra of novel (E)-4-((4-(heptyloxy)phenyl)diazenyl)benzyl (((9H-fluoren-9-yl)methoxy)carbonyl)-D-alaninate (Fmoc-al-az): determination of dipole moment by experimental and theoretical study. J Mol Struct 1129:248–255. https://doi.org/10.1016/j.molstruc.2016.09.078

    Article  CAS  Google Scholar 

  60. Khatir-Hamdi N, Makhloufi-Chebli M, Grib H et al (2019) Synthesis DFT/TD-DFT theoretical studies and experimental solvatochromic shift methods on determination of ground and excited state dipole moments of 3-(2-hydroxybenzoyl) coumarins. J Mol Struct 1175:811–820. https://doi.org/10.1016/j.molstruc.2018.08.039

    Article  CAS  Google Scholar 

  61. Mott NF, Davis EA (2012) Electronic processes in non-crystalline materials. Oxford University Press

  62. Sıdır İ, Sıdır YG, Berber H, Demiray F (2019) Electronic structure and optical properties of Schiff base hydrazone derivatives by solution technique for optoelectronic devices: synthesis, experiment and quantum chemical investigation. J Mol Struct 1176:31–46. https://doi.org/10.1016/J.MOLSTRUC.2018.08.067

    Article  Google Scholar 

  63. Umarani P, Thiruvalluvar A, Raja CR (2018) A critical study of crystal structure, N—H—Br interaction, effect of charge transfer on third-order nonlinear optical properties and optical limiting behaviour of a new crystal: (4-Methoxyphenyl) methanaminium bromide. J Mol Struct 1173:822–832. https://doi.org/10.1016/j.molstruc.2018.07.043

    Article  CAS  Google Scholar 

  64. Ghosh A, Selvaraj P, Sundaram S, Mallick TK (2018) The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Sol Energy 163:537–544. https://doi.org/10.1016/J.SOLENER.2018.02.021

    Article  CAS  Google Scholar 

  65. Houser K, Mossman M, Smet K, Whitehead L (2016) Tutorial: color rendering and its applications in lighting. LEUKOS - J Illum Eng Soc North Am 12:7–26. https://doi.org/10.1080/15502724.2014.989802

    Article  Google Scholar 

  66. Li C, Cui G, Melgosa M, Ruan X, Zhang Y, Ma L, Xiao K, Luo MR (2016) Accurate method for computing correlated color temperature. Opt Express 24:14066. https://doi.org/10.1364/OE.24.014066

    Article  PubMed  Google Scholar 

  67. Zikriya M, Nadaf YF, Manjunath C, Renuka CG (2018) Microstructural and optical properties of rare earth ions doped TiO2 for potential white LED applications. J Mater Sci Mater Electron 29:16824–16835. https://doi.org/10.1007/s10854-018-9777-6

    Article  CAS  Google Scholar 

  68. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144. https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Renuka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramod, A.G., Renuka, C.G. & Nadaf, Y.F. Electronic Structure, Optical Properties and Quantum Chemical Investigation on Synthesized Coumarin Derivative in Liquid Media for Optoelectronic Devices. J Fluoresc 29, 953–968 (2019). https://doi.org/10.1007/s10895-019-02409-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02409-w

Keywords

Navigation