Skip to main content
Log in

Photophysical and Electrochemical Studies of 4-Dicyanomethylene 2,6-Dimethyl-4H-Pyran (DDP) Dye with Amides in Water

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Photophysical and electrochemical studies of DDP dye with Formamide and alkyl substituted amides were carried out in water. Addition of Formamide (F), Acetamide (ACM), N,N-Dimethylformamide (DMF), Dimethylacetamide (DMAC) to DDP dye result in an isosbestic point. A fluorescence enhancement of DDP dye is observed on the addition of amides. Apart from the fluorescence enhancement, the addition of formamide result in no significant shift in the position of emission maxima of DDP dye whereas addition of ACM and DMF result in a shift towards the blue and red region respectively. DDP dye exhibits three lifetime components which are unique in lifetime and amplitude. The fluorescence lifetime and relative amplitude of DDP dye varies significantly by addition of amides in aqueous solution which are influenced by amidewater hydrogen-bonding network and hydrophobic influences of the alkyl substituted amides. The nature of interaction between dye and amide be predominantly through hydrogen-bonding wherein the carbonyl oxygen (C=O) of amides are bonded to N-H hydrogen of DDP dye through water molecule. The existence of more than one microenvironment of DDP dye in aqueous phase is elucidated by Electrochemical Impedence Spectroscopy (EIS) through Nyquist plots wherein it signifies that there exist at least three different micro environments which support the existence of different fluorescence lifetimes. Fluorescence spectral technique is used as an efficient tool to elucidate the nature of interaction of water soluble probe with hydrogen-bonding solutes is established in our studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Scheme 4
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2002) Solvent Effects on Hydrogen BondsA Theoretical Study. J Phys Chem A 106:1862–1871

    Article  CAS  Google Scholar 

  2. Kumaran R, Ramamurthy P (2014) J Lumin 148:277–284

    Article  CAS  Google Scholar 

  3. Langley CH, Allinger NL (2003) J Phys Chem A 107:5208–5216

    Article  CAS  Google Scholar 

  4. Dixon DA, Dobbs KD, Valentini JJ (1994) J Phys Chem 98:13435–13439

    Article  CAS  Google Scholar 

  5. Johansson A, Kollman P, Rothenberg S, McKelvey J (1974) Hydrogen bonding ability of the amide group. J Am Chem Soc 96:3794–3800

    Article  CAS  Google Scholar 

  6. Myshakina NS, Ahmed Z, Asher SA (2008) Dependence of Amide Vibrations on Hydrogen Bonding. J Phys Chem B 112:11873–11877

    Article  CAS  Google Scholar 

  7. Barthel J, Gores HJ (1994) Solution chemistry, a cutting edge in modern electrochemical technology. In: Mamantov G, Popov AJ (eds) Chemistry of nonaqueous solutions…current progress. VCH, New York

    Google Scholar 

  8. Koller AN, Bozilovic J, Engels JW, Gohlke H (2010) Nucleic Acids Res 38:3133–3146

    Article  CAS  Google Scholar 

  9. Mikhonin AV, Bykov SV, Myshakina NS, Asher SA (2006) Peptide Secondary Structure Folding Reaction Coordinate: Correlation between UV Raman Amide III Frequency, Ψ Ramachandran Angle, and Hydrogen Bonding. J Phys Chem B 110:1928–1943

    Article  CAS  Google Scholar 

  10. P. Assarsson, F. R. Eirich. (1968), In Molecular Association in Biological and Related Systems; Goddard, E. D.; Advances in Chemistry; American Chemical Society: Washington, DC

  11. Barthel J, Buchner R, Wurm B (2002) J Mol Liq 98:51

    Article  Google Scholar 

  12. Kang YK (2000) Which Functional Form Is Appropriate for Hydrogen Bond of Amides? J Phys Chem B 104:8321–8326

    Article  CAS  Google Scholar 

  13. Del Bene JE (1978) Molecular orbital theory of the hydrogen bond. 18. Methyl substituent effects on amide hydrogen bonding. J Am Chem Soc 100:1387–1394

    Article  Google Scholar 

  14. Del Bene JE (1978) J Am Chem Soc 100:1396

    Google Scholar 

  15. Johansson A, Kollman PA (1972) Amide-water hydrogen bonding. J Am Chem Sac 94:6196–6198

    Article  CAS  Google Scholar 

  16. Schmidt P, Dybal J, Rodriguez-Cabello JC, Reboto V (2005) Biomacromolecules 6:697

    Article  CAS  Google Scholar 

  17. Hankins D, Moskowitz J, Stillinger F (1970) Water Molecule Interactions. J Chem Phys 53:4544–4554

    Article  CAS  Google Scholar 

  18. Costain CC, Dowling JM (1960) Microwave Spectrum and Molecular Structure of Formamide. J Chem Phys 32:158–165

    Article  CAS  Google Scholar 

  19. Petersen R (1960) Interactions in the binary liquid system N,N-Dimethylacetamide—water: viscosity and density. J Phys Chem 64:184–185

    Article  CAS  Google Scholar 

  20. C. P. Smyth, (1955), Dielectric Behavior and Structure, McGraw-Hill, New York, pp 53, 73

  21. R.W. Hartley, E.A. Peterson, H.A. Sober, (1962), Biochemistry1, 60

  22. Peterson HA, Foster JF (1965, 2503) J Biol Chem:240

  23. Besley NA (2004) Ab Initio Modeling of Amide Vibrational Bands in Solution. J Phys Chem A 108:10794–10800

    Article  CAS  Google Scholar 

  24. Kumaran R, Ramamurthy P (2010) J Lumin 130:1203

    Article  Google Scholar 

  25. Kumaran R, Ramamurthy P (2011) Photophysical Studies on the Interaction of Formamide and Alkyl Substituted Amides with Photoinduced Electron Transfer (PET) Based Acridinedione Dyes in Water. J Fluoresc 21:2165–2172

    Article  CAS  Google Scholar 

  26. Kumaran R, Ramamurthy P (2011) Denaturation Mechanism of BSA by Urea Derivatives: Evidence for Hydrogen-Bonding Mode from Fluorescence Tools. J Fluoresc 21:1499–1508

    Article  CAS  Google Scholar 

  27. Woods LL (1958) Some Further Reactions of 2,6-Dimethyl-4-pyrone. J Am Chem Soc 80:1440–1442

    Article  CAS  Google Scholar 

  28. Hammond PR (1979) Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red. Optics Comm 29:331–333

    Article  CAS  Google Scholar 

  29. Marason EG (1981) Laser dye DCM: CW, synchronously pumped, cavity pumped and single-frequency performance. Optics Comm 37:56–58

    Article  CAS  Google Scholar 

  30. Antonov VS, Hohla KL (1983) Dye stability under excimer-laser pumping. Appl Phys B Lasers Opt 32:9–14

    Article  Google Scholar 

  31. Hsing-Kang Z, Ren-Lan M, Er-Pin N, Chu G (1985) Behaviour of the laser dye 4-dicyanomethylene-2-methyl-6-dimethylaminostryryl-4H-pyran in the excited singlet state. J Photo Chem 29:397–404

    Article  CAS  Google Scholar 

  32. Taylor TR (1986) Passive mode locking of DCM and Rhodamine 101 flashlamp-pumped dye laser systems. Optics Comm 57:117–120

    Article  CAS  Google Scholar 

  33. Bourson J, Doiz D, Lambert D, Sacaze T, Valeur BA (1989) A derivative of laser dye DCM highly soluble in alcohols. Optics Comm 72:367–370

    Article  CAS  Google Scholar 

  34. Y. Q. Xia, Y. G. Jiang, R. W. Fan, (2009), Optics and Laser Technology 41, 700–704

  35. A.J. Bard, L.R. Faulkener, (1980), Electrochemical methods; fundamentals and applications; Department of Chemistry and Biochemistry; University of Texas at Austin: John wiley & sons, inc, New York

  36. Stelian LUPU, U.P.B. Sci. (2011), Bull Series B, 73, 85

Download references

Acknowledgements

The authors are thankful to Prof. P. Ramamurthy and Dr.C.Selvaraju of National Centre for Ultrafast Processses, University of Madras, Chennai-600 113, India for permitting us to avail the fluorescence facilities. S.G and R.K thank Dr. Edamana Prasad, Associate Professor, Department of Chemistry, IIT Madras for permitting to avail the fluorescence lifetime facilities. The authors are thankful by, Shri Ashok Kumar Mundra The Secretary and Dr. R. Ganasen, The Principal and Dr. S. Ilangovan, former Head of the department of Chemistry Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai-600 106 for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran Kumaran.

Electronic supplementary material

ESM 1

Absorption spectra of DDP dye (7.1 × 10−5 M) with ACM in water. 1) DDP dye (7.1 × 10−5 M), 2) DDP dye + ACM 2.0 M, 3) DDP dye + ACM 4.0 M, 4) DDP dye + ACM 6.0 M. (a) Isosbestic point. (PPTX 348 kb)

ESM 2

Absorption spectra of DDP dye (7.1 × 10−5 M) with DMF in water. 1) DDP dye (7.1 × 10−5 M), 2) DDP dye + DMF 2.0 M, 3) DDP dye + DMF 4.0 M, 4) DDP dye + DMF 6.0 M. (a) Isosbestic point. (PPTX 255 kb)

ESM 3

Absorption spectra of DDP dye (7.1 × 10−5 M) with DMAC in water. 1) DDP dye (7.1 × 10−5 M), 2) DDP dye + DMAC 2.0 M, 3) DDP dye + DMAC 4.0 M, 4) DDP dye + DMAC 6.0 M. (a) Isosbestic point. (PPTX 791 kb)

ESM 4

Fluorescence decay of DDP dye (7.1 × 10−5 M) as a function of ACM in water. λex 375 nm and λem 436 nm. 1)Laser profile. 2) DDP dye alone, 3) DDP dye + ACM 2.0 M, 4) DDP dye + ACM 4.0 M, 5) DDP dye + ACM 6.0 M. (PPTX 268 kb)

ESM 5

3D-Contor Spectrum of DDP dye (7.1 × 10−5 M) as a function of ACM in water λex375 nm and λem 436 nm. a) DDP dye + ACM 2.0 M, b) DDP dye + ACM 4.0 M, c) DDP dye + ACM 6.0 M. (PPTX 311 kb)

ESM 6

3D-Contor Spectrum of DDP dye (7.1 × 10−5 M) as a function of DMF in water λex375 nm and λem 436 nm. a) DDP dye + DMF 2.0 M, b) DDP dye + DMF 4.0 M, c) DDP dye + DMF 6.0 M, d) DDP dye + DMF 8.0 M, e) DDP dye + DMF 10.0 M. (PPTX 1238 kb)

ESM 7

3D-Contor Spectrum of DDP dye (7.1 × 10−5 M) as a function of DMAC in water λex375 nm and λem 436 nm. a) DDP dye + DMAC 2.0 M, b) DDP dye + DMAC 4.0 M, c) DDP dye + DMAC 6.0 M. (PPTX 833 kb)

ESM 8

Electrochemical Impedance Spectroscopy of DDP dye (7.1 × 10−5 M) With ACM (1.0 M) in water. (PPTX 272 kb)

ESM 9

Electrochemical Impedance Spectroscopy of DDP dye (7.1 × 10−5 M) With DMAC 1.0 M in water. (PPTX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, S., Vasanthi, R., Vanjinathan, M. et al. Photophysical and Electrochemical Studies of 4-Dicyanomethylene 2,6-Dimethyl-4H-Pyran (DDP) Dye with Amides in Water. J Fluoresc 28, 1379–1391 (2018). https://doi.org/10.1007/s10895-018-2303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2303-7

Keywords

Navigation