Skip to main content
Log in

Changes in the Spectral Features of Zinc Phthalocyanine Induced by Nitrogen Dioxide Gas in Solution and in Solid Polymer Nanofiber Media

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The changes in the spectral features of zinc phthalocyanine in the visible domain as a result of its interaction with nitrogen dioxide gas were assessed in this work. This was done both in solution and when the phthalocyanine was incorporated into a solid polystyrene polymer nanofiber matrix. The spectral changes were found to be spontaneous and marked in both cases suggesting a rapid response criterion for the detection of the gas. In particular, the functionalised nano-fabric material could serve as a practical fire alarm system as it rapidly detects the nitrogen dioxide gas generated during burning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zugle R, Kambo-Dorsa J, Gadzekpo VPY (2003) Detection of metal ions using ion-channel sensor based on self-assembled monolayer of thioctic acid. Talanta 61(6):837–848

    Article  CAS  PubMed  Google Scholar 

  2. Sugawara M, Kojima K, Sazawa H, Umezawa Y (1987) Ion-channel sensors. Anal Chem 59(24):2842–2846

    Article  CAS  PubMed  Google Scholar 

  3. Shishiyanu ST, Shishiyanu TS, Lupan OI (2005) Sensing characteristics of tin-doped ZnO thin films as NO 2 gas sensor. Sensors Actuators B Chem 107(1):379–386

    Article  CAS  Google Scholar 

  4. Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta 622(1):48–61

    Article  CAS  PubMed  Google Scholar 

  5. Fayed TA, Grampp G, Landgraf S (1999) Fluorescence quenching of aromatic hydrocarbons by nitroxide radicals: a mechanismatic study. Int J Photoenergy 1(3):173–176

    Article  CAS  Google Scholar 

  6. Salimi R, Yener N, Safari R (2016) Use and evaluation of newly synthesized fluorescence probes to detect generated OH• radicals in fibroblast cells. J Fluoresc 26(3):919–924

    Article  CAS  PubMed  Google Scholar 

  7. Fontijn A, Sabadell AJ, Ronco RJ (1970) Homogeneous chemiluminescent measurement of nitric oxide with ozone. Implications for continuous selective monitoring of gaseous air pollutants. Anal Chem 42(6):575–579

    Article  CAS  Google Scholar 

  8. Shao M, Tang X, Zhang Y, Li W (2006) City clusters in China: air and surface water pollution. Front Ecol Environ 4(7):353–361

    Article  Google Scholar 

  9. Nezel T, Spichiger-Keller UE, Ludin C, Hensel A (2001) Gas-selective optical sensors for fire detectors. CHIMIA Int J Chem 55(9):725–731

    CAS  Google Scholar 

  10. Salem AA, Soliman AA, El-Haty IA (2011) New spectrophotometric method for determining nitrogen dioxide in air using 2, 2-azino-bis (3-ethyl benzothiazoline)-6-sulfonic acid-diammonium salt and passive sampling. Anal Chem Insights 6:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koupparis M, Walczak K, Malmstadt H (1982) Kinetic determination of nitrite in waters by using a stopped-flow analyser. Analyst 107(1280):1309–1315

    Article  CAS  Google Scholar 

  12. Liang B, Iwatsuki M, Fukasawa T (1994) Catalytic spectrophotometric determination of nitrite using the chlorpromazine–hydrogen peroxide redox reaction in acetic acid medium. Analyst 119(9):2113–2117

    Article  CAS  Google Scholar 

  13. Butt SB, Riaz M, Iqbal MZ (2001) Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography. Talanta 55(4):789–797

    Article  CAS  PubMed  Google Scholar 

  14. dos Santos BD, Conte-Junior CA, Paschoalin VMF, Alvares TS (2016) Quantitative and comparative contents of nitrate and nitrite in Beta vulgaris L. by reversed-phase high-performance liquid chromatography-fluorescence. Food Anal Methods 9(4):1002–1008

    Article  Google Scholar 

  15. Li J-Z, X-C W, Yuan R, Lin H-G, R-Q Y (1994) Cobalt phthalocyanine derivatives as neutral carriers for nitrite-sensitive poly (vinyl chloride) membrane electrodes. Analyst 119(6):1363–1366

    Article  CAS  Google Scholar 

  16. Schaller U, Bakker E, Spichiger UE, Pretsch E (1994) Nitrite-selective microelectrodes. Talanta 41(6):1001–1005

    Article  CAS  PubMed  Google Scholar 

  17. Bertotti M, Pletcher D (1997) Amperometric determination of nitrite via reaction with iodide using microelectrodes. Anal Chim Acta 337(1):49–55

    Article  CAS  Google Scholar 

  18. Ximenes M, Rath S, Reyes F (2000) Polarographic determination of nitrate in vegetables. Talanta 51(1):49–56

    Article  CAS  PubMed  Google Scholar 

  19. Öztekin N, Nutku MS, Erim FB (2002) Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis. Food Chem 76(1):103–106

    Article  Google Scholar 

  20. Kawakami T, Igarashi S (1996) Highly sensitive spectrophotometric determination of nitrite ion using 5, 10, 15, 20-tetrakis (4-aminophenyl) porphine for application to natural waters. Anal Chim Acta 333(1):175–180

    Article  CAS  Google Scholar 

  21. Giné M, Zagatto E, Reis B (1980) Simultaneous determination of nitrate and nitrite by flow injection analysis. Anal Chim Acta 114:191–197

    Article  Google Scholar 

  22. Andrade R, Viana CO, Guadagnin SG, Reyes FG, Rath S (2003) A flow-injection spectrophotometric method for nitrate and nitrite determination through nitric oxide generation. Food Chem 80(4):597–602

    Article  CAS  Google Scholar 

  23. Chillawar RR, Tadi KK, Motghare RV (2015) Voltammetric techniques at chemically modified electrodes. J Anal Chem 70(4):399–418

    Article  CAS  Google Scholar 

  24. Monser L, Sadok S, Greenway G, Shah I, Uglow R (2002) A simple simultaneous flow injection method based on phosphomolybdenum chemistry for nitrate and nitrite determinations in water and fish samples. Talanta 57(3):511–518

    Article  CAS  PubMed  Google Scholar 

  25. Morishige K, Tomoyasu S, Iwano G (1997) Adsorption of CO, O2, NO2, and NH3 by metallophthalocyanine monolayers supported on graphite. Langmuir 13(19):5184–5188

    Article  CAS  Google Scholar 

  26. Ogunsipe A, Chen J-Y, Nyokong T (2004) Photophysical and photochemical studies of zinc (II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem 28(7):822–827

    Article  CAS  Google Scholar 

  27. Zugle R, Litwinski C, Nyokong T (2011) Photophysical characterization of dysprosium, erbium and lutetium phthalocyanines tetrasubstituted with phenoxy groups at non-peripheral positions. Polyhedron 30(9):1612–1619

    Article  CAS  Google Scholar 

  28. Adewuyi S, Ondigo DA, Zugle R, Tshentu Z, Nyokong T, Torto N (2012) A highly selective and sensitive pyridylazo-2-naphthol-poly (acrylic acid) functionalized electrospun nanofiber fluorescence “turn-off” chemosensory system for Ni 2+. Anal Methods 4(6):1729–1735

    Article  CAS  Google Scholar 

  29. Tang S, Shao C, Liu Y, Li S, Mu R (2007) Electrospun nanofibers of poly (ethylene oxide)/teraamino-phthalocyanine copper (II) hybrids and its photoluminescence properties. J Phys Chem Solids 68(12):2337–2340

    Article  CAS  Google Scholar 

  30. Durmuş M, Nyokong T (2008) Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochim Acta A Mol Biomol Spectrosc 69(4):1170–1177

    Article  PubMed  Google Scholar 

  31. Fernandez-Sanchez JF, Nezel T, Steiger R, Spichiger-Keller UE (2006) Novel optical NO 2-selective sensor based on phthalocyaninato-iron (II) incorporated into a nanostructured matrix. Sensors Actuators B Chem 113(2):630–638

    Article  CAS  Google Scholar 

  32. Caronna T, Colleoni C, Dotti S, Fontana F, Rosace G (2006) Decomposition of a phthalocyanine dye in various conditions under UV or visible light irradiation. J Photochem Photobiol A Chem 184(1):135–140

    Article  CAS  Google Scholar 

  33. Ngai T, Zhang G, X-y L, Ng DK, Wu C (2001) Disstacking of phthalocyanine in water by poly (ethylene oxide). Langmuir 17(5):1381–1383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Tetteh.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflicts of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zugle, R., Tetteh, S. Changes in the Spectral Features of Zinc Phthalocyanine Induced by Nitrogen Dioxide Gas in Solution and in Solid Polymer Nanofiber Media. J Fluoresc 27, 739–743 (2017). https://doi.org/10.1007/s10895-016-2006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-2006-x

Keywords

Navigation