Skip to main content
Log in

A Combined Experimental and Computational Investigation on Spectroscopic and Photophysical Properties of a Coumarinyl Chalcone

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Here, we synthesized a new coumarinyl chalcone derivative 3-[3-(3-Methyl-thiophen-2-yl)-acryloyl]-chromen-2-one (MTC) by simple and proficient method. A comprehensive study on the photophysics of a coumarinyl chalcone derivative having pi-conjugated potential chromophore system 3-[3-(3-Methyl-thiophen-2-yl)-acryloyl]-chromen-2-one (MTC) has been carried out spectroscopically. The electronic absorption and emission characteristic of MTC were studied in different protic and aprotic solvents using absorption and steady-state fluorescence techniques. The spectral behavior of this compound is found to be extremely sensitive to the polarity and hydrogen bonding nature of the solvent. The compound shows very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of the compound has been investigated in detail. The difference between the excited and ground state dipole moments (Δμ) were estimated from solvatochromic methods using Lippert–Mataga and Reichardt’s correlations. The prepared compound was also studied by density functional theory (DFT) and time-dependent density functional theory (TDDFT). The results revealed that it could be easily reproduce by computational means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lacy A, O’Kennedy R (2004) Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr Pharm Des 10(30):3797–3811

    Article  CAS  PubMed  Google Scholar 

  2. Gonçalves MS (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  PubMed  Google Scholar 

  3. Ye FF, Gao JR, Sheng WJ, Jia H (2008) One-pot synthesis of coumarin derivatives. Dyes Pigments 77:556–558

    Article  CAS  Google Scholar 

  4. Dhar S, Rana DK, Roy SS, Roy S, Bhattacharya S, Bhattacharya SC (2012) Effect of solvent environment on the photophysics of a newly synthesized bioactive 7-oxy(5-selenocyanato-pentyl)-2H-1-benzopyran-2-one. J Lumin 132:957–964

    Article  CAS  Google Scholar 

  5. Chemla DS, Zyss J (1987) Non-linear optical properties of organic molecules and crystals. Academic Press, New York

    Google Scholar 

  6. Kawski A (1994) Progress in photochemistry and photophysics. CRC Press, New York

    Google Scholar 

  7. Haley LV, Hameka HF (1977) Calculation of molecular electric polarizabilities and dipole moments. II. The LiH molecule. Int J Quantum Chem 11:733–741

    Article  CAS  Google Scholar 

  8. Liptay W (1974) Dipole moments and polarizabilities of molecules in excited electronic states, Excited States, 1. Academic Press, Inc., New York

    Google Scholar 

  9. Hass MP, Warman JM (1982) Photon-induced molecular charge separation studiedby nanosecond time-resolved microwave conductivity. Chem Phys 73:35–53

    Article  Google Scholar 

  10. Lombardi JR (1970) Correlation between structure and dipole moments in the excitedstates of substituted benzenes. J Am Chem Soc 92:1831–1833

    Article  CAS  Google Scholar 

  11. Kawski A, Kuklinski B, Bojarski P (2005) Dipole moment of aniline in the excited S1state from thermochromic effect on electronic spectra Chem. Phys Lett 41:5251–5255

    Google Scholar 

  12. Pannipara M, Asiri AM, Alamry KA, Arshad MN, El-Daly SA (2015) Synthesis, spectral behaviour and photophysics of donor–acceptor kind of chalcones: excited state intramolecular charge transfer and fluorescence quenching studiesSpectrochim. Acta, Part A 136:1893–1902

    Article  CAS  Google Scholar 

  13. Lakowicz JR (2006) Principle of fluorescence spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  14. Birks JB (1970) Photo physics of aromatic molecules. Wiley-Interscience, New York

    Google Scholar 

  15. Lippert E (1957) Spectroscopic determination of the dipole moment of aromatic compounds in the first excited singlet state. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  16. Mataga N, Kubota T (1970) Molecular interactions and electronic spectra. Marcel Dekker, Inc., New York

  17. Suppan P (1983) Excited-state dipole moments from absorption/ fluorescence solvatochromic ratios. Chem Phys Lett 94:272–275

    Article  CAS  Google Scholar 

  18. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358

    Article  CAS  Google Scholar 

  19. RaviM ST, Samanta A, Radhakrishnan TP (1995) Excitedstate dipole moments of some coumarin dyes from a solvatochromic method using the solvent polarity parameter, \( {E}_T^N \). J Chem Soc Faraday Trans 91(17):2739–2742

    Article  Google Scholar 

  20. Coe BJ, Harris JA, Asselberghs I, Clays K, Olbrechts G, Persoons A, Hupp JT, Johnson RC, Coles SJ, HursthouseMB NK (2002) Quadratic nonlinear optical properties of N-aryl stilbazolium dyes. Adv Funct Mater 12:110–116

    Article  CAS  Google Scholar 

  21. Gordon P, Gregory P (1987) Organic chemistry in colour. Chimia, Moskva

    Book  Google Scholar 

  22. Shaikh M, Mohanty J, Singh PK, Bhasikuttan AC, Rajule RN, Satam VS, Bendre SR, Kanetkar VR, Pal H (2010) Contrasting solvent polarity effect on the photophysical properties of two newly synthesized aminostyryl dyes in the lower and in the higher solvent polarity regions. J Phys Chem A 114:4507

    Article  CAS  PubMed  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  24. Sun J, Song J, Zhao Y, Liang WZ (2007) Real-time propagation of the reduced one-electron density matrix in atom-centered Gaussian orbitals: application to absorption spectra of silicon clusters. J Chem Phys 127:234107

    Article  PubMed  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  26. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Zhang CR, Liang WZ, Chen HS, Chen YH, Wei ZQ, Wu YZ (2008) Theoretical studies on the geometrical and electronic structures of N-methyle-3,4-fulleropyrrolidine. J Mol Struct (THEOCHEM) 862:98–104

    Article  CAS  Google Scholar 

  29. Matthews D, Infelta P, Grätzel M (1996) Calculation of the photocurrent–potential characteristic for regenerative, sensitized semiconductor electrodes. Sol Energy Mater Sol Cells 44:119–155

    Article  CAS  Google Scholar 

  30. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3039

    Article  CAS  PubMed  Google Scholar 

  31. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  32. Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1998) Recent advances in the description of solvent effects with the polarizable continuum model. Adv Quantum Chem 32:227–262

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia for the support and facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah G. Al-Sehemi.

Electronic Supplementary Material

ESM 1

(DOCX 2215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sehemi, A.G., Pannipara, M., Kalam, A. et al. A Combined Experimental and Computational Investigation on Spectroscopic and Photophysical Properties of a Coumarinyl Chalcone. J Fluoresc 26, 1357–1365 (2016). https://doi.org/10.1007/s10895-016-1823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1823-2

Keywords

Navigation