Skip to main content
Log in

A New Fluorescence Sensor for Cerium (III) Ion Using Glycine Dithiocarbamate Capped Manganese Doped ZnS Quantum Dots

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new fluorescence sensor for Ce3+ions is reported in this paper. This sensor is based on the fluorescence quenching of glycine dithiocarbamate (GDTC)-functionalized manganese doped ZnS quantum dots (QDs) in the presence of Ce3+ions. The synthesis of ultra-small GDTC-Mn:ZnS quantum dots (QDs) is based on the co-precipitation of nanoparticles in aqueous Solution. The nanoparticles are characterized with fluorescence spectroscopy, UV–vis absorption spectra, high-resolution transmission electron microscopy, X-ray power diffraction (XRD), and infrared spectroscopy. In the test carried out, it was found that the interaction between Ce3+ions and GDTC capped Mn:ZnS QDs quenches the original fluorescence of QDs according to the Stern-Volmer equation and the results show the existence of collisional quenching process. A linear relationship was observed between the extent of quenching and the concentration of Ce3+in the range of 2.0 × 10−6 to 3.2 × 10−5 mol.L−1, with a detection limit of 2.29 × 10−7 mol.L−1. The relative standard deviation of 1.61 % was obtained for five replicate measurements. The possible quenching mechanism was also examined by fluorescence and UV–vis absorption spectra. The interference of other cations was negligible on the quantitative determination of Ce3+. This method proved to be simple, sensitive, low cost, and also reliable for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kuang H, Zhao Y, Ma W, Xu L, Wang L, Xu C (2011) Recent developments in analytical applications of quantum dots. Trends Anal Chem 30:1620–1636

    Article  CAS  Google Scholar 

  2. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 40:7602–7625

    Article  Google Scholar 

  3. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys 79:1086–1088

    Article  CAS  Google Scholar 

  4. Callan JF, De Silva AP, Mulrooney RC, Mc Caughan B (2007) Luminescent sensing with quantum dots. J Fluoresc 3–4:257–262

    Google Scholar 

  5. Galian RE, Guardia M (2009) The use of quantum dots in organic chemistry. Trends Anal Chem 28:279–91

    Article  CAS  Google Scholar 

  6. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41:4067–85

    Article  CAS  PubMed  Google Scholar 

  7. Thomas D, Lonappan L, Rajith L, Cyriac ST, Kumar KG (2013) Quantum Dots (QDs) Based Fluorescent Sensor for the Selective Determination of Nimesulide. J Fluoresc 3:473–478

    Article  Google Scholar 

  8. Jian W, Zhuang J, Zhang D, Dai J, Yang W, Bai Y (2006) Synthesis of highly luminescent and photostable ZnS:Ag nanocrystals under microwave irradiation. Mater Chem Phys 99:494–7

    Article  CAS  Google Scholar 

  9. Labiadh H, Chaabane TB, Piatkowski D, Mackowski S, Lalevée J, Ghanbaja J et al (2013) Aqueous route to color-tunable Mn-doped ZnS quantum dots. Mater Chem Phys 140:674–682

    Article  CAS  Google Scholar 

  10. Khosravi AA, Kundu M, Jatwa L, Deshpande SK, Bhagwat UA, Sastry M et al (1995) Green luminescence from copper doped zinc sulphide quantum particles. Appl Phys Lett 67:2702–2704

    Article  CAS  Google Scholar 

  11. Qu SC, Zhou WH, Liu FQ, Chen NF, Wang ZG, Pan HY et al (2002) Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution. Appl Phys Lett 80:3605–7

    Article  CAS  Google Scholar 

  12. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2001) Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett 1:429–33

    Article  CAS  Google Scholar 

  13. Ma X, Song J, Yu Z (2011) The light emission properties of ZnS:Mn nanoparticles. Thin Solid Films 519:5043–5045

    Article  CAS  Google Scholar 

  14. Segets D, Komada S, Butz B, Spiecker E, Mori Y, Peukert W (2013) Quantitative evaluation of size selective precipitation of Mn-doped ZnS quantum dots by size distributions calculated from UV/Vis absorbance spectra. J Nanoparticle Res 15:1–13

    Google Scholar 

  15. Ali TA, Mohamed GG, Azzam EMS, Abd-elaal AA (2014) Thiol surfactant assembled on gold nanoparticles ion exchanger for screen-printed electrode fabrication Potentiometric determination of Ce(III) in environmental polluted samples. Sensors Actuators B Chem 191:192–203

    Article  CAS  Google Scholar 

  16. Afkhami A, Madrakian T, Shirzadmehr A, Tabatabaee M, Bagheri H (2012) New Schiff base-carbon nanotube–nanosilica–ionic liquid as a high performance sensing material of a potentiometric sensor for nanomolar determination of cerium(III) ions. Sensors Actuators B Chem 174:237–44

    Article  CAS  Google Scholar 

  17. Awual MR, Yaita T, Shiwaku H (2013) Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem Eng J 228:327–35

    Article  CAS  Google Scholar 

  18. Wang L, Yu Y, Huang X, Long Z, Cui D (2013) Toward greener comprehensive utilization of bastnaesite: Simultaneous recovery of cerium, fluorine, and thorium from bastnaesite leach liquor using HEH(EHP). Chem Eng J 215–216:162–167

    Article  Google Scholar 

  19. Abhilash S, Sinha MK, Sinha BDP (2014) Extraction of lanthanum and cerium from Indian red mud. Int J Miner Process 127:70–73

    Article  CAS  Google Scholar 

  20. Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104:85–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Masi AN, Olsina RA (1993) Preconcentration and determination of Ce, La and Pr by X-ray fluorescence analysis, using Amberlite XAD resins loaded with 8-Quinolinol and 2-(2-(5 chloropyridylazo)-5-dimethylamino)-phenol. Talanta 40:931–934

    Article  CAS  PubMed  Google Scholar 

  22. Achilli M, Ciceri G, Ferraroli R, Heltai D, Martinotti W (1989) Determination of cerium, yttrium and thorium in environmental samples. Analyst 114:319–23

    Article  CAS  Google Scholar 

  23. Ayranov M, Cobos J, Popa K, Rondinella VV (2009) Determination of REE, U, Th, Ba, and Zr in simulated hydrogeological leachates by ICP-AES after matrix solvent extraction. J Rare Earths 27:123–7

    Article  Google Scholar 

  24. Amin AS, Moustafa MM, Issa RM (1997) A rapid, selective and sensitive spectrophotometric method for the determination of Ce(III) using some bisazophenyl-β-diketone derivatives. Talanta 44:311–317

    Article  CAS  PubMed  Google Scholar 

  25. Zhang T, Lu J, Ma J, Qiang Z (2008) Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation. Chemosphere 71:911–21

    Article  CAS  PubMed  Google Scholar 

  26. Meng JX, Wu HJ, Feng DX (2000) Fluorimetry determination of trace Ce3+ with EDTP. Spectrochim Acta A 56:1925–8

    Article  Google Scholar 

  27. Rounaghi G, Zadeh Kakhki RM, Sadeghian H (2011) A new cerium (III) ion selective electrode based on 2,9-dihydroxy-1,10-diphenoxy-4,7-dithia decane, a novel synthetic ligand. Electrochim Acta 56:9756–9761

    Article  CAS  Google Scholar 

  28. Gupta VK, Singh AK, Gupta B (2006) A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N, N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal Chim Acta 575:198–204

    Article  CAS  PubMed  Google Scholar 

  29. Akseli A, Rakicioğlu Y (1996) Fluorimetric trace determination of cerium(III) with sodium triphosphate. Talanta 43:1983–1988

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Schnoes AM, Clapp AR (2010) Dithiocarbamates as Capping Ligands for Water-Soluble Quantum Dots. ACS Appl Mater Interfaces 2:3384–3395

    Article  CAS  PubMed  Google Scholar 

  31. Thirumaran S, Ramalingam K (2000) Mixed ligand complexes involving aminoacid dithiocarbamates, substituted phosphines and nickel(II). Transit Met Chem 25:60–62

    Article  CAS  Google Scholar 

  32. Criado JJ, Carrasco A, Macias B, Salas JM, Medarde M, Castillo M (1989) New PtS4 chromophores of dithiocarbamates derived from α-amino acids: synthesis, characterization and thermal behaviour. Inorg Chim Acta 160:37–42

    Article  CAS  Google Scholar 

  33. Rajabi HR, Shamsipur M, Khosravi AA, Khani O, Yousefi MH (2013) Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochim Acta A 107:256–62

    Article  CAS  Google Scholar 

  34. Wu H, Fan Z (2012) Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of raceanisodamine hydrochloride and atropine sulfate in biological fluids. Spectrochim Acta A 90:131–134

    Article  CAS  Google Scholar 

  35. Bhargava RN (1996) Doped nanocrystalline materials-Physics and applications. J Lumin 70:85–94

    Article  CAS  Google Scholar 

  36. Cao J, Yang J, Zhang Y, Yang L, Wang Y, Wei M et al (2009) Optimized doping concentration of manganese in zinc sulfide nanoparticles for yellow-orange light emission. J Alloys Compd 486:890–894

    Article  CAS  Google Scholar 

  37. Ren Z, Yang H, Shen L, Han S (2008) Hydrothermal preparation and properties of nanocrystalline ZnS:Mn. J Mater Sci Mater Electron 19:1–4

    Article  Google Scholar 

  38. Viswanath R, Bhojya Naik HS, Yashavanth Kumar GS, Prashanth Kumar PN, Harish KN, Prabhakara MC et al (2014) Synthesis and photoluminescence enhancement of PVA capped Mn2+ doped ZnS nanoparticles and observation of tunable dual emission: a new approach. Appl Surf Sci 301:126–33

    Article  CAS  Google Scholar 

  39. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8–10:569–85

    Article  Google Scholar 

  40. Chopra N, Mansingh A, Chadha GK (1990) Electrical, optical and structural properties of amorphous V2O5-TeO2 blown films. J Non-Cryst Solids 126:194–201

    Article  CAS  Google Scholar 

  41. Ghobadi N (2013) Band gap determination using absorption spectrum fitting procedure. Int Nano Lett 3:2

    Article  Google Scholar 

  42. Mu J, Gu D, Xu Z (2005) Synthesis and stabilization of ZnS nanoparticles embedded in silica nanospheres. Appl Phys A 80:1425–1429

    Article  CAS  Google Scholar 

  43. Kole AK, Tiwary CS, Kumbhakar P (2013) Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination. J Appl Phys 113:114308

    Article  Google Scholar 

  44. Dong B, Cao L, Su G, Liu W (2012) Synthesis and characterization of Mn doped ZnS d-dots with controllable dual-color emissions. J Colloid Interface Sci 367:178–182

    Article  CAS  PubMed  Google Scholar 

  45. Criado JJ, Fernandez I, Macias B, Salas JM, Medarde M (1990) Novel chelates of Pd(II) dithiocarbamates. Spectroscopic studies and thermal behaviour. Inorg Chim Acta 174:67–75

    Article  CAS  Google Scholar 

  46. Stewart MH, Susumu K, Mei BC, Medintz IL, Delehanty JB, Blanco-Canosa JB et al (2010) Multidentate Poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J Am Chem Soc 132:9804–9813

    Article  CAS  PubMed  Google Scholar 

  47. Geszke-Moritz M, Clavier G, Lulek J, Schneider R (2012) Copper- or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. J Lumin 132:987–91

    Article  CAS  Google Scholar 

  48. Aldana J, Lavelle N, Wang Y, Peng X (2005) Size-dependent dissociation ph of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc 127:2496–2504

    Article  CAS  PubMed  Google Scholar 

  49. Gao M, Kirstein S, Möhwald H, Rogach AL, Kornowski A, Eychmüller A et al (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102:8360–8363

    Article  CAS  Google Scholar 

  50. Koneswaran M, Narayanaswamy R (2009) l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators B Chem 139:104–109

    Article  CAS  Google Scholar 

  51. Wang J, Xu J, Goodman MD, Chen Y, Cai M, Shinar J et al (2008) A simple biphasic route to water soluble dithiocarbamate functionalized quantum dots. J Mater Chem 18:3270–4

    Article  CAS  Google Scholar 

  52. Querner C, Reiss P, Bleuse J, Pron A (2004) Chelating ligands for nanocrystals’ surface functionalization. J Am Chem Soc 126:11574–11582

    Article  CAS  PubMed  Google Scholar 

  53. Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 12:8844–8850

    Article  Google Scholar 

  54. Zamani HA, Ganjali MR, Adib M (2007) Construction of a highly selective PVC-based membrane sensor for Ce(III) ions. Sensors Actuators B Chem 120:545–550

    Article  CAS  Google Scholar 

  55. Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillin semicarbazone. Anal Chim Acta 429:237–246

    Article  CAS  Google Scholar 

  56. Wu P, Zhao T, Wang S, Hou X (2014) Semicondutor quantum dots-based metal ion probes. Nanoscale 6:43–64

    Article  CAS  PubMed  Google Scholar 

  57. Duan J, Jiang X, Ni S, Yang M, Zhan J (2011) Facile synthesis of N-acetyl-l-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+. Talanta 85:1738–1743

    Article  CAS  PubMed  Google Scholar 

  58. Zhang K, Guo J, Nie J, Du B, Xu D (2014) Ultrasensitive and selective detection of Cu2+ in aqueous solution with fluorescence enhanced CdSe quantum dots. Sensors Actuators B Chem 190:279–287

    Article  CAS  Google Scholar 

  59. Chen J, Gao Y, Guo C, Wu G, Chen Y, Lin B (2008) Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(II) in aqueous solution. Spectrochim Acta Mol Biomol Spectros 69:572–579

    Article  Google Scholar 

  60. Kobayashi S, Sugiura M, Kitagawa H, Lam WWL (2002) Rare-earth metal triflates in organic synthesis. Chem Rev 102:2227–2302

    Article  CAS  PubMed  Google Scholar 

  61. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  62. Cai ZX, Yang H, Zhang Y, Yan XP (2006) Preparation, characterization and evaluation of water-soluble l-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta 559:234–239

    Article  CAS  Google Scholar 

  63. Shanmugam N, Cholan S, Viruthagiri G, Gobi R, Kannadasan N (2014) Synthesis and characterization of Ce3+-doped flowerlike ZnS nanorods. Appl Nanosci 4:359–365

    Article  CAS  Google Scholar 

  64. Wang J, Zhou X, Ma H, Tao G (2011) Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection. Spectrochim Acta Mol Biomol Spectros 81:178–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Chemistry and Chemical Engineering Research Center of Iran for providing departmental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Rofouei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rofouei, M.K., Tajarrod, N., Masteri-Farahani, M. et al. A New Fluorescence Sensor for Cerium (III) Ion Using Glycine Dithiocarbamate Capped Manganese Doped ZnS Quantum Dots. J Fluoresc 25, 1855–1866 (2015). https://doi.org/10.1007/s10895-015-1678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1678-y

Keywords

Navigation