Skip to main content
Log in

Performances of a Cylindrical Heat Pipe Using Ferrofluid as the Working Liquid at Different Inclination Angles

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

In this research, the thermal performance of a cylindrical heat pipe filled with a ferrofluid as the working liquid was tested at different inclination angles: 0, 60, and 90o. The ferrofluid was synthesized from magnetite particles and water as the base fluid. The heat pipe was manufactured from a copper container, and copper fibers were used as the wick structure inside the heat pipe. The magnetite particles had an average diameter of 13 nm, as was yielded by the transmission electron microscopy (TEM). The zeta potential value (30.25 mV) and visual analysis showed that the ferrofluid was stable for nine months and could be used as the working liquid in cylindrical heat pipes. The thermal conductivity and specific heat of the ferrofluid were 0.605 W/(m·K) and 4090 J/(kg∙K), respectively. The performances of the heat pipe at different inclination angles allowed the conclusion about a relatively stable thermal resistance and temperature distribution, particularly at a higher heat input of 15 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Tetuko, B. Shabani, R. Omrani, B. Paul, and J. Andrews, Study of a thermal bridging approach using heat pipes for simultaneous fuel cell cooling and metal hydride hydrogen discharge rate enhancement, J. Power Sources, 397, 177–188 (2018).

    Article  Google Scholar 

  2. J. Smith, R. Singh, M. Hinterberger, and M. Mochizuki, Battery thermal management system for electric vehicle using heat pipes, Int. J. Therm. Sci., 134, 517–529 (2018).

    Article  Google Scholar 

  3. A. P. Tetuko, R. K. Hadi, M. Faqih, E. A. Setiadi, C. Kurniawan, and P. Sebayang, Heat pipes as a passive cooling system for flywheel energy storage application, J. Phys. Conf. Ser., 1191, Article ID 012024 (2019).

  4. X. Chen, H. Ye, X. Fan, T. Ren, and G. Zhang, A review of small heat pipes for electronics, Appl. Therm. Eng., 96, 1–17 (2016).

    Article  Google Scholar 

  5. R. R. Gnanadurai and A. S. Varadarajan, Investigation on the effect of cooling of the tool using heat pipe during hard turning with minimal fluid application, Eng. Sci. Technol. Int. J., 19, 1190–1198 (2016).

    Google Scholar 

  6. T. S. Jadhav and M. M. Lele, Theoretical energy saving analysis of air conditioning system using heat pipe heat exchanger for Indian climatic zones, Eng. Sci. Technol. Int. J., 18, 669–673 (2015).

    Google Scholar 

  7. B. Zohuri, Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, Springer (2016).

  8. D. Reay and P. Kew, Heat Pipes. Theory, Design and Applications, Elsevier, Butterworth–Heinemann (2005).

  9. A. Faghri, Heat Pipes Science and Technology, Taylor and Francis, Washington (1995).

    Google Scholar 

  10. X. Yang, Y. Y. Yan, and D. Mullen, Recent developments of lightweight, high performance heat pipes, Appl. Therm. Eng., 33–34, 1–14 (2012).

    Article  Google Scholar 

  11. C. W. Chan, E. Siqueiros, J. Ling-Chin, M. Royapoor, and A. P. Roskilly, Heat utilisation technologies: A critical review of heat pipes, Renew. Sustain. Energy Rev., 50, 615–627 (2015).

    Article  Google Scholar 

  12. H. Jouhara, A. Chauhan, T. Nannou, S. Almahmoud, B. Delpech, and L. C. Wrobel, Heat pipe based systems ― Advances and applications, Energy, 128, 729–754 (2017).

    Article  Google Scholar 

  13. J. M. Maldonado, A. de Gracia, and L. F. Cabeza, Systematic review on the use of heat pipes in latent heat thermal energy storage tanks, J. Energy Storage, 32, Article ID 101733 (2020).

  14. G. Huang, W. Li, G. Zhong, A. A. Abdulshaheed, and C. Li, Optimizing L-shaped heat pipes with partially-hybrid mesh-groove wicking structures, Int. J. Heat Mass Transf., 170, Article ID 120926 (2021).

  15. S. Zhang, C. Chen, G. Chen, Y. Sun, Y. Tang, and Z. Wang, Capillary performance characterization of porous sintered stainless steel powder wicks for stainless steel heat pipes, Int. Commun. Heat Mass Transf., 116, Article ID 104702 (2020).

  16. A. S. Barrak, A. A. M. Saleh, and Z. H. Naji, An experimental study of using water, methanol, and binary fluids in oscillating heat pipe heat exchanger, Eng. Sci. Technol. Int. J., 23, 357–364 (2020).

    Google Scholar 

  17. M. Kaya, An experimental investigation on thermal efficiency of two-phase closed thermosyphon (TPCT) filled with CuO/water nanofluid, Eng. Sci. Technol. Int. J., 23, 812–820 (2020).

    Google Scholar 

  18. S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids Science and Technology, John Wiley & Sons, Inc., Hoboken, New Jersey (2008).

    Google Scholar 

  19. S. Eiamsa-Ard, K. Kiatkittipong, and W. Jedsadaratanachai, Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes, Eng. Sci. Technol. Int. J., 18, 336–350 (2015).

    Google Scholar 

  20. S. A. Ahmed, M. Ozkaymak, A. Sözen, T. Menlik, and A. Fahed, Improving car radiator performance by using TiO2–water nanofluid, Eng. Sci. Technol. Int. J., 21, 996–1005 (2018).

    Google Scholar 

  21. N. Putra, W. N. Septiadi, H. Rahman, and R. Irwansyah, Thermal performance of screen mesh wick heat pipes with nanofluids, Exp.Therm. Fluid Sci., 40, 10–17 (2012).

    Article  Google Scholar 

  22. L. G. Asirvatham, R. Nimmagadda, and S. Wongwises, Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid, Int. J. Heat Mass Transf., 60, 201–209 (2013).

    Article  Google Scholar 

  23. Y. C. Chiang, W. C. Kuo, C. C. Ho, and J. J. Chieh, Experimental study on thermal performances of heat pipes for air-conditioning systems influenced by magnetic nanofluids, external fields, and microwicks, Int. J. Refrig., 43, 62–70 (2014).

    Article  Google Scholar 

  24. K. M. Kim, Y. S. Jeong, I. G. Kim, and I. C. Bang, Comparison of thermal performance of water-filled, SiC nanofluid filled and SiC nanoparticles-coated heat pipes, Int. J. Heat Mass Transf., 88, 862–871 (2015).

    Article  Google Scholar 

  25. M. M. Sarafraz, O. Pourmehran, B. Yang, and M. Arjomandi, Assessment of the thermal performance of a thermosyphon heat pipe using zirconia–acetone nanofluids, Renew. Energy, 136, 884–895 (2019).

    Article  Google Scholar 

  26. M. Kole and T. K. Dey, Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids, Appl. Therm. Eng., 50, 763–770 (2013).

    Article  Google Scholar 

  27. G. Kumaresan, S. Venkatachalapathy, and L. G. Asirvatham, Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids, Int. J. Heat Mass Transf., 72, 507–516 (2014).

    Article  Google Scholar 

  28. E. Sadeghinezhad, M. Mehrali, M. A. Rosen, A. R. Akhiani, S. R. Latibari, M. Mehrali, and H. S. C. Metselaar, Experimental investigation of the effect of grapheme nanofluids on heat pipe thermal performance, Appl. Therm. Eng., 100, 775–787 (2016).

    Article  Google Scholar 

  29. W. I. A. Aly, M. A. Elbalshhouny, H. M. Abd El-Hameed, and M. Fatouh, Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angles and filling ratios, Appl. Therm. Eng., 110, 1294–1304 (2017).

  30. M. Mahdavi, S. Tiari, S. De Schampheleire, and S. Qiu, Experimental study of the thermal characteristics of a heat pipe, Exp. Therm. Fluid Sci., 93, 292–304 (2018).

    Article  Google Scholar 

  31. M. Taslimifar, M. Mohammadi, H. Afshin, M. H. Saidi, and M. B. Shafii, Overall thermal performance of ferrofluidic open loop pulsating heat pipes: An experimental approach, Int. J. Therm. Sci., 65, 234–241 (2013).

    Article  Google Scholar 

  32. A. Gandomkar, M. H. Saidi, M. B. Shafii, M. Vandadi, and K. Kalan, Visualization and comparative investigations of pulsating ferrofluid heat pipe, Appl. Therm. Eng., 116, 56–65 (2017).

    Article  Google Scholar 

  33. H. M. Goshayeshi, F. Izadi, and K. Bashirnezhad, Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and g-Fe2O3 for achieving an empirical correlation, Phys. E: Low-Dimens. Syst. Nanostructures, 89, 43–49 (2017).

    Article  Google Scholar 

  34. W. Kang, Y. C. Wang, Y. C. Liu, and H. M. Lo, Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe, Appl. Therm. Eng., 126, 1044–1050 (2017).

    Article  Google Scholar 

  35. A. P. Tetuko, L. F. Nurdiyansah, M. Addin, E. A. Setiadi, M. Ginting, and P. Sebayang, Magnetic nanofluids as heat transfer media in heat pipes, Adv. Nat. Sci.: Nanosci. Nanotechnol., 11, No. 2, Article ID 025002 (2020).

  36. N. S. Asri, A. P. Tetuko, A. Esmawan, M. Addin, E. A. Setiadi, W. B. K. Putri, M. Ginting, and P. Sebayang, Syntheses of ferrofluids using polyethylene glycol (PEG) coated magnetite (Fe3O4), citric acid, and water as the working liquid in a cylindrical heat pipe, Nano-Struct. Nano-Objects, 25, Article ID 100654 (2021).

  37. P. Kumar, H. Khanduri, S. Pathak, A. Singh, G. A. Basheed, and R. P. Pant, Temperature selectivity for single phase hydrothermal synthesis of PEG-400 coated magnetite nanoparticles, J. Chem. Soc., Dalt. Trans., 49, 8672–8683 (2020).

  38. P. K. Das, A. K. Mallik, R. Ganguly, and A. K. Santra, Stability and thermophysical measurements of TiO2 (anatase) nanofluids with different surfactants, J. Mol. Liq., 254, 98–107 (2018).

    Article  Google Scholar 

  39. A. Barhoum, M. L. García-Betancourt, H. Rahier, and G. Van Assche, Physicochemical characterization of nanomaterials: Polymorph, composition, wettability, and thermal stability, in: A. Barhoum and A. S. Hamdy (Eds.), Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends, Elsevier Inc. (2018), pp. 255–278.

    Chapter  Google Scholar 

  40. C. J. Chirayil, J. Abraham, R. K. Mishra, S. C. George, and S. Thomas, Instrumental techniques for the characterization of nanoparticles, in: S. Thomas, R. Thomas, A. K. Zachariah, and R. K. Mishra (Eds.), Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Jaipur, India (2017), pp. 1–56.

    Google Scholar 

  41. M. Alsaadi, R. Fu, B. Li, R. Boukhanouf, and Y. Yan, Thermo-physical properties and thermo-magnetic convection of ferrofluid, Appl. Therm. Eng., 88, 14–21 (2015).

    Article  Google Scholar 

  42. J. J. W ang, R. T. Zheng, J. W. Gao, and G. Chen, Heat conduction mechanisms in nanofluids and suspensions, Nano Today, 7, No. 2, 124–136 (2012).

  43. A. P. Tetuko, S. Simbolon, T. G. Sitorus, R. Zurcher, R. K. Hadi, E. A. Setiadi, C. Kurniawan, M. Ginting, and P. Sebayang, The effect of magnetic nano-fluids (Fe3O4) on the heat transfer enhancement in a pipe with laminar flow, Heat Mass Transf., 56, No. 1, 65–74 (2020).

    Article  Google Scholar 

  44. R. Senthilkumar, S. Vaidyanathan, and B. Sivaraman, Performance analysis of heat pipe using copper nanofluid with aqueous solution of n-butanol, Int. J. Mech. Math. Eng., 1, 251–256 (2010).

    Google Scholar 

  45. R. R. Riehl and N. D. Santos, Water–copper nanofluid application in an open loop pulsating heat pipe, Appl. Therm. Eng., 42, 6–10 (2011).

    Article  Google Scholar 

  46. G. Rosengarten, A. P. Tetuko, K. K. Li, A. Wu, and R. Lamb, The effect of nano-structured surfaces on droplet impingement heat transfer, in: Proc. ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, Washington (2011), pp. 1029–1036.

  47. A. P. Tetuko, D. S. Khaerudini, P. Sardjono, P. Sebayang, and G. Rosengarten, Superhydrophobic surface as a fluid enhancement material in engineering applications, AIP Conf. Proc., 1555 (1) (2013), pp. 3–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Asri.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 1, pp. 199–207, January–February 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asri, N.S., Tetuko, A.P., Ridwan, M. et al. Performances of a Cylindrical Heat Pipe Using Ferrofluid as the Working Liquid at Different Inclination Angles. J Eng Phys Thermophy 96, 197–205 (2023). https://doi.org/10.1007/s10891-023-02676-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02676-2

Keywords

Navigation