Skip to main content
Log in

Analysis of Thermal Performance, Efficiency, and Effectiveness of a Straight Porous Fin with Variable Thermal Conductivity

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Radiating extended surfaces are generally used to reinforce heat transfer between a primary surface and its environment. Specifically, if great temperature contrasts are taken into account, variable thermal conductivity materially affects the performance of the system. Thus the present numerical study is concerned with the thermal performance of a straight porous fi n under the influence of temperature-dependent thermal conductivity, magnetic field, and radiation. The heat transfer model, which includes the Darcy law for simulating flow with solid–fluid interactions in a porous medium, the Rosseland approximation for heat transfer through radiation, the Maxwell equations for the magnetic field effect, and linearly varying temperature-dependent thermal conductivity, results in a highly nonlinear ordinary differential equation solved with using the finite-difference scheme with suitable boundary conditions. The obtained solutions are interpreted physically by considering the impact of relevant nondimensional parameters on the thermal performance, efficiency, and effectiveness of the system. It follows from the analysis that the temperature-dependent thermal conductivity improves these characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Snider and A. Kraus, The quest for the optimum longitudinal fin profile, ASME Heat Transf. Div., 64, 43–48 (1986).

    Google Scholar 

  2. A. R. Shouman, An exact general solution for the temperature distribution and radiation heat transfer along constant cross-sectional area fi n, Quart. Appl. Math., 25, 458–462 (1968).

    Article  Google Scholar 

  3. P. Singh, L. Harvender, and B. S. Ubhi, Design and analysis for heat transfer through fi n with extensions, Int. J. Innov. Res. Sci. Eng. Technol., 3, 12054–12061 (2014).

    Google Scholar 

  4. P. Moorthy, A. N. Oumer, and M. Ishak, Experimental investigation on effect of fin shape on the thermal-hydraulic performance of compact fin-and-tube heat exchangers, IOP Conf. Ser.: Mater. Sci. Eng., 318, 1–9 (2018).

    Article  Google Scholar 

  5. B. N. Niroop Kumar and Ramatulasi, Calculating heat transfer rate of cylinder fins body by varying geometry and material, Int. J. Mech. Eng. Robot. Res., 3, 642–657 (2014).

    Google Scholar 

  6. P. Mathiazhagan and S. Jayabharathy, Heat transfer and temperature distribution of different fin geometry using numerical method, JP J. Heat Mass Transf., 6, 223–234 (2012).

    Google Scholar 

  7. R. S. R. Gorla and A. Y. Bakier, Thermal analysis of natural convection and radiation in porous fins, Int. Commun. Heat Mass Transf., 38, 638–645 (2011).

    Article  Google Scholar 

  8. S. Saedodin and M. Shahbabaei, Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM), Arab. J. Sci. Eng., 38, 2227–2231 (2013).

    Article  Google Scholar 

  9. S. Kiwan, Effect of radiative losses on the heat transfer from porous fin, Int. J. Therm. Sci., 46, 1046–1055 (2007).

    Article  Google Scholar 

  10. M. T. Darvishi, R. S. R. Gorla, F. Khani, and B. J. Gireesha, Thermal analysis of natural convection and radiation in a fully wet porous fin, Int. J. Numer. Methods Heat Fluid Flow, 26, 2419–2431 (2016).

    Article  Google Scholar 

  11. A. Taklifi, C. Aghanajafi, and H. Akrami, The effect of MHD on a porous fin attached to vertical isothermal surface, Transp. Porous Media, 85, 215–231 (2010).

    Article  Google Scholar 

  12. H. A. Hoshyar, D. D. Ganji, and A. R. Majidian, Least square method for porous fin in presence of uniform magnetic field, J. Appl. Fluid Mech., 9, 661–668 (2016).

    Article  Google Scholar 

  13. G. Sevilgen, A numerical analysis of a convective straight fin with temperature dependent thermal conductivity, Therm. Sci., 21, 939–952 (2017).

    Article  Google Scholar 

  14. S. Singh, D. Kumar, and K. N. Rai, Convective-radiative fin with temperature dependent thermal conductivity, heat transfer coefficient and wavelength dependent surface emissivity, Propuls. Power Res., 3, 207–221 (2014).

    Article  Google Scholar 

  15. K. Bamdad, A. Azimi, and H. Ahmadikia, Thermal performance analysis of arbitrary-profile fins with non-Fourier heat conduction, J. Eng. Math., 76, 181–193 (2012).

    Article  MathSciNet  Google Scholar 

  16. A. Moradi and H. Ahmadikia, Analytical solution for different profiles of fin with temperature-dependent thermal conductivity, Math. Probl. Eng., 2010, 1–15 (2010).

    Article  MathSciNet  Google Scholar 

  17. S. E. Ghasemi, M. Hatami, and D. D. Ganji, Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Case Stud. Therm. Eng., 4, 1–8 (2014).

    Article  Google Scholar 

  18. A. Moradi, T. Hayat, and A. Alsaedi, Convection–radiation thermal analysis of triangular porous fins with temperature dependent thermal conductivity by DTM, Energy Convers. Manage., 77, 70–77 (2014).

    Article  Google Scholar 

  19. G. Oguntala, R. Abd-Alhameed, and G. Sobamowo, On the effect of magnetic field on thermal performance of convective-radiative fin with temperature dependent thermal conductivity, Karbala Int. J. Mod. Sci., 4, 1–11 (2017).

    Article  Google Scholar 

  20. M. F. Modest, Radiative Heat Transfer, 2nd ed., Academic Press (2003).

    MATH  Google Scholar 

  21. M. G. Sobamowo and A. O. Adesina, Thermal performance analysis of convective-radiative fin with temperature dependent thermal conductivity in the presence of uniform magnetic field using partial Noether method, J. Therm. Eng., 4, 2287–2300 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babitha.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 2, pp. 335–349, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babitha, Madhurab, K.R. Analysis of Thermal Performance, Efficiency, and Effectiveness of a Straight Porous Fin with Variable Thermal Conductivity. J Eng Phys Thermophy 95, 392–401 (2022). https://doi.org/10.1007/s10891-022-02493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02493-z

Keywords

Navigation