Skip to main content
Log in

The Effect of MHD on a Porous Fin Attached to a Vertical Isothermal Surface

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effect of MHD on the total heat transfer from a porous fin attached to a vertical isothermal surface has been investigated. The Maxwell equations have been used, and also Rosseland approximation for radiation heat transfer and Darcy model for simulating the flow in porous medium have been adapted. The governing equations are reduced to a nonlinear ODE. The fin is supposed to be an infinite fin, which is exposed to a magnetic field. The dimensionless temperature profile, and the average Nusselt number profiles have been obtained for different Rayleigh numbers and porosities. Validation is carried out by comparing the results obtained in this study with those predicted by Darcy–Brinkman–Forchheimer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross sectional area (m2)

B 0 :

Magnetic field intensity (T)

c p :

Specific heat (J kg−1 K−1)

g :

Gravitational acceleration (m s−2)

h :

Heat transfer coefficient (J m−2 K−1)

J :

Total current intensity (A)

J c :

Conduction current intensity (A)

k :

Thermal conductivity (W m−1 K−1)

k r :

Thermal conductivity ratio, k eff/k f

K :

Permeability of the porous fin (m2)

\({\dot{m}}\) :

Mass flow rate (kg s−1)

P :

Fin perimeter (m)

Rd :

Radiation–conduction parameter, \({Rd=(4\sigma T_\infty^3)/(3\beta_{\rm R}k_{\rm eff})}\)

R 2 :

Surface-ambient radiation parameter, \({R_2 =(4\sigma T_\infty^3 b)/k_{\rm eff}}\)

Ra*:

Modified Rayleigh number, Ra* = g β (T bT )Kb/α vk r

T :

Temperature (K)

T b :

Temperature at the fin base (K)

u :

Axial velocity (m s−1)

v :

Normal velocity (m s−1)

V :

Macroscopic velocity of electrons (m s−1)

\({\overline{{\vartheta}_{\rm w}}}\) :

Average velocity of the fluid passing through the fin at any point (m s−1)

x :

Axial coordinate

y :

Transverse coordinate

α :

Thermal diffusivity (m2 s−1)

β R :

Rosseland extinction coefficient

ε :

Emissivity

\({\tilde{\varepsilon}}\) :

Porosity

ζ :

Magnetic interaction parameter, \({{\sigma B_0^2 x}/{\rho u_\infty}}\)

η :

Pseudo similarity variable, y(u /vx)1/2

θ :

Dimensionless temperature

θ b :

Surface temperature parameter, θ b = T b/T

μ :

Dynamic viscosity (kg m−1 s−1)

ν :

Kinematic viscosity (m2 s−1)

σ :

Electric conductivity (Ω−1 m−1)

σ st :

Stefan–Boltzmann constant (W m2 K4)

ρ :

Density of the fluid (kg m−3)

ρ ε :

Electrical density (A m−3)

eff:

Effective properties

f:

Fluid

b:

Conditions at the fin base

s:

Solid

∞:

Ambient conditions

1:

Clear fluid domain

2:

Porous domain

References

  • Abdelkhalek M.M.: Heat and mass transfer in MHD free convection from a moving permeable vertical surface by perturbation technique. Commun. Nonlinear Sci. Numer. Simul. 14, 2091–2102 (2008)

    Article  Google Scholar 

  • Abo-Eldahab E.M., Azzam G.E.A.: Thermal radiation effects on MHD flow past a semi-infinite inclined plate in the presence of mass diffusion. Heat Mass Transfer 41(12), 1056–1065 (2005a)

    Article  Google Scholar 

  • Abo-Eldahab E.M., Azzam G.E.A.: Thermal radiation effects on magnetohydrodynamic flow past a semi-infinite vertical plate in the presence of mass diffusion. Can. J. Phys. 83(3), 243–256 (2005b)

    Article  Google Scholar 

  • Aldoss T.K., Ali Y.D., Al-Nimr M.A.: MHD mixed convection from a horizontal circular cylinder. Numer. Heat Transfer 30(4), 379–396 (1996)

    Article  Google Scholar 

  • Ali M.M., Chen T.S., Armaly B.F.: Natural convection–radiation interaction in boundary layer flow over horizontal surface. AIAA J. 22, 1797–1803 (1984)

    Article  Google Scholar 

  • Alkam M., Al-Nimr M.: Improving the performance of double-pipe heatexchangers by using porous substrates. Int. J. Heat Mass Transfer 42, 3609–3618 (1999)

    Article  Google Scholar 

  • Al-Odat M.Q., Damseh R.A., Al-Nimr M.A.: Effect of magnetic field on entropy generation due to laminar forced convection past a horizontal flat plate. Entropy 6(3), 293–303 (2004)

    Article  Google Scholar 

  • Cebeci T., Bradshaw P.: Momentum Transfer in Boundary Layers. Hemisphere, Washington, DC (1977)

    Google Scholar 

  • Chamkha A.J., Takhar H.S., Nat G.: Mixed convection flow over a vertical plate with localized heating (cooling), magnetic field and suction (injection). Heat Mass Transfer 40, 835–841 (2004)

    Article  Google Scholar 

  • Gau C., Yih K.A., Aung W.: Measurements of heat transfer and flow structure in heated vertical channels. AIAA J. Thermophys. Heat Transfer 6(4), 707–712 (1992). doi:10.2514/3.11555

    Article  Google Scholar 

  • Hossain A., Pop I.: Radiation effects on free convection over a vertical plate embedded in a porous medium with high porosity. Int. J. Therm. Sci. 40, 289–295 (2001)

    Article  Google Scholar 

  • Huang P.C., Vafai K.: Passive alteration and control of convective heat transfer utilizing alternate porous cavity-block wafers. Int. J. Heat Fluid Flow 15, 48–61 (1994)

    Article  Google Scholar 

  • Ingham D.B., Keen D.J., Heggs P.J.: Flows in vertical channels with asymmetric wall temperatures and including situations where reverse flows occur. J. Heat Transfer 110, 910–917 (1988) ISSN 0022-1481

    Article  Google Scholar 

  • Jeng Y.N., Chen J.L., Aung W.: On the Reynolds-number independence of mixed convection in a vertical channel subjected to asymmetric wall temperatures with and without flow reversal. Int. J. Heat Fluid Flow 13, 329–339 (1992)

    Article  Google Scholar 

  • Kahveci, K., Oztuna, S.: MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur. J. Mech. B (2009). doi:10.1016/j.euromechflu.2009.07.001

  • Khaefinejad, B., Aghanajafi, C.: Laminar flow with simultaneously effects of mixed convection and thermal radiation in a channel. J. Fusion Energy 28, 83–90 (2008). Online 1572-9591

    Google Scholar 

  • Kiwan S.: Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46, 1046–1055 (2007). doi:10.1007/s10894-008-9152-3

    Article  Google Scholar 

  • Kiwan S., Al-Nimr M.: Enhancement of heat transfer using porous fins. ASME J. Heat Transfer 123(4), 790–795 (2001)

    Article  Google Scholar 

  • Kiwan S., Zeitoun O.: Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Methods Heat Fluid Flow 18(5), 618–634 (2008). ISSN 0961-5539. doi:10.1108/09615530810879747

    Article  Google Scholar 

  • Langeroudi H.G., Aghanajafi C.: Analysis and optimization laminar viscous flow through a channel. J. Fusion Energy 25(3), 155–164 (2006a). doi:10.1007/s10894-006-9012-y

    Article  Google Scholar 

  • Langeroudi H.G., Aghanajafi C.: Thermodynamics’ second law analysis for laminar non newtonian fluid flow. J. Fusion Energy 25(3), 165–173 (2006b). doi:10.1007/s10894-006-9014

    Article  Google Scholar 

  • Sediki E., Soufiani A., Sifaoui M.S.: Combined gas radiation and laminar mixed convection in vertical circular tubes. Int. J. Heat Fluid flow 24, 736–743 (2003)

    Article  Google Scholar 

  • Sharbati E., Safavisohiand B., Aghanajafi C.: Transient heat transfer analysis of a layer by considering the effect of radiation. J. Fusion Energy 23(3), 207–215 (2006). doi:10.1007/s10894-005-5600-5

    Article  Google Scholar 

  • Siegel R., Howell J.R.: Thermal Radiation Heat Transfer, 3rd edn, Chap. 12. Hemisphere, Washington, DC (1992)

    Google Scholar 

  • Umavathi J.C., Kumar J.P., Chamkha A.J., Pop I.: Mixed convection in a vertical porous channel. Int. J. Transp. Porous Media 61, 315–335 (2005)

    Article  Google Scholar 

  • Wang M., Tsuji T., Nagano Y.: Mixed convection with flow reversal in the thermal entrance region of horizontal and vertical pipes. Int. J. Heat Mass Transfer 37, 2305–2319 (1994)

    Article  Google Scholar 

  • Yih K.A.: Heat source/sink effect on mhd mixed convection in stagnation flow on a vertical permeable plate in porous media. Int. Commun. Heat Mass 25(3), 427–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Taklifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taklifi, A., Aghanajafi, C. & Akrami, H. The Effect of MHD on a Porous Fin Attached to a Vertical Isothermal Surface. Transp Porous Med 85, 215–231 (2010). https://doi.org/10.1007/s11242-010-9556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9556-1

Keywords

Navigation