Skip to main content
Log in

Influence of the "Self-Radiation" of Combustion Products on the Intensity of Evaporation of an Inhomogeneous Water Droplet in the Flame

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The processes of heat transfer during the heating, evaporation, and boiling of an inhomogeneous (with a solid inclusion) droplet of a liquid (water) in a high-temperature (800–1500 K) gas medium have been modeled numerically. The inclusion (carbonaceous particle) in the shape of a disk of height and diameter 2 mm has been considered. The volume of the water enveloping the inclusion ranged within 5–20 μL. It has been shown that the ″self-radiation″ of triatomic gases in combustion products (using commercial alcohol as an example) significantly intensifies (compared to the air heated to the same temperatures) the heating of the inhomogeneous liquid droplet. A comparative analysis of the influence of the temperature of the gas medium and of the thickness in the liquid film enveloping the inclusion on the basic characteristic of the process under study, i.e., the time of existence (complete evaporation) of the droplet, has been made. The reliability of the results of theoretical investigations and the legitimacy of the conclusions drawn have been assessed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Yuen and L. W. Chen, Heat-transfer measurements of evaporating liquid droplets, Int. J. Heat Mass Transf., 21, No. 5, 537–542 (1978).

    Article  Google Scholar 

  2. M. Renksizbulut and M. C. Yuen, Experimental study of droplet evaporation in a high-temperature air stream, J. Heat Transf., 105, No. 2, 384–388 (1983).

    Article  Google Scholar 

  3. M. Renksizbulut and M. C. Yuen, Numerical study of droplet evaporation in a high-temperature air stream, J. Heat Transf., 105, No. 2, 389–397 (1983).

    Article  Google Scholar 

  4. A. Yu. Varaksin, Hydrogasdynamics and thermophysics of two-phase flows: problems and achievements, Teplofiz. Vys. Temp., 51, No. 3, 421–455 (2013).

    Google Scholar 

  5. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Heat and mass transfer in the process of movement of water drops in a high-temperature gas medium, J. Eng. Phys. Thermophys., 86, Issue 1, 62–68 (2013).

    Article  Google Scholar 

  6. A. Yu. Varaksin, Clusterization of particles in turbulent and vortex two-phase flows, Teplofiz. Vys. Temp., 52, No. 5, 777–796 (2014).

    Google Scholar 

  7. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of mixtures and foreign inclusions in water droplets influence on integral characteristics of their evaporation during motion through high-temperature gas area, Int. J. Therm. Sci., 88, 193–200 (2015).

    Article  Google Scholar 

  8. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Influence of solid inclusions in liquid drops moving through a high temperature gaseous medium on their evaporation, Tech. Phys., 59, No. 12, 1770–1774 (2014).

    Article  Google Scholar 

  9. S. S. Kutateladze, Fundamentals of the Theory of Heat Transfer [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  10. V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer [in Russian], Énergiya, Moscow (1965).

    Google Scholar 

  11. G. V. Kuznetsov and P. A. Strizhak, Transient heat and mass transfer at the ignition of vapor and gas mixture by a moving hot particle, Int. J. Heat Mass Transf., 53, Nos. 5–6, 923–930 (2010).

    Article  MATH  Google Scholar 

  12. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Numerical analysis of heat-mass transfer mechanisms in gas-phase ignition of films of liquid condensed substances by a laser beam. J. Eng. Thermophys., 19, No. 2, 85–93 (2010).

    Article  Google Scholar 

  13. G. V. Kuznetsov and P. A. Strizhak, Analysis of possible reasons for macroscopic differences in the characteristics of the ignition of a model liquid fuel by a local heat source and a massive heated body, Russ. J. Phys. Chem. B, 6, No. 4, 498–510 (2012).

    Article  Google Scholar 

  14. V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in Gas-Droplet Flows [in Russian], Izd. NGTU, Novosibirsk (2010).

    MATH  Google Scholar 

  15. D. S. Mikhatulin, Yu. V. Polezhaev, and D. L. Reviznikov, Heat and Mass Transfer and Thermoerosive Destruction of Thermal Protection [in Russian], Yanus-K, Moscow (2011).

    Google Scholar 

  16. V. V. Yagov, Heat Transfer in Single-Phase Media in Phase Transformations [in Russian], MÉI, Moscow (2014).

    Google Scholar 

  17. G. V. Kuznetsov, P. A. Kuibin, and P. A. Strizhak, Estimation of the numerical values of the evaporation constants of the water drops moving in the high temperature gas flow, High Temp., 53, No. 2, 254–258 (2015).

    Article  Google Scholar 

  18. T. M. Muratova and D. A. Labuntsov, Kinetic analysis of the processes of evaporation and condensation, Teplofiz. Vys. Temp., 7, No. 5, 959–967 (1969).

    Google Scholar 

  19. A. A. Avdeev and Yu. B. Zudin, Kinetic analysis of intense evaporation (inverse-balance method), Teplofiz. Vys. Temp., 50, No. 4, 565–574 (2012).

    Google Scholar 

  20. A. A. Samarskii, The Theory of Difference Schemes [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  21. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], OOO "Stars," Moscow (2006).

  22. V. N. Yurenev and P. D. Lebedev (Eds.), Heat-Engineering Handbook, Vol. 1, [in Russian], Énergiya, Moscow (1975).

  23. V. N. Yurenev and P. D. Lebedev (Eds.), Heat-Engineering Handbook, Vol. 2, [in Russian], Énergiya, Moscow (1975).

  24. A. Cenedese, A. Pocecco, and G. Querzoli, Effects of image compression on PIV and PTV analysis, Opt. Laser Technol., 31, No. 2, 141–149 (1999).

    Article  Google Scholar 

  25. C. N. Young, D. A. Johnson, and E. J. Weckman, A model-based validation framework for PIV and PTV, Exp. Fluids, 36, No. 1, 23−35 (2004).

    Article  Google Scholar 

  26. T. Hadad and R. Gurka, Effects of particle size, concentration and surface coating on turbulent flow properties obtained using PIV/PTV, Exp. Therm. Fluid Sci., 45, 203–212 (2013).

    Article  Google Scholar 

  27. A. K. Prasad, Stereoscopic particle image velocimetry, Exp. Fluids, 29, 103–116 (2000).

    Article  Google Scholar 

  28. E. Yu. Stepanov, V. P. Maslov, and D. L. Zakharov, A Stereo PIV system for measuring the velocity vector in complex gas flows, Meas. Tech., 52, No. 6, 626–631 (2009).

    Article  Google Scholar 

  29. M. Legrand, J. Nogueira, A. Lecuona, S. Nauri, and P. A. Rodriguez, Atmospheric low swirl burner flow characterization with stereo PIV, Exp. Fluids, 48, No. 5, 901-913 (2010).

    Article  Google Scholar 

  30. J. Janiszewski, Measurement procedure of ring motion with the use of high speed camera during electromagnetic expansion, Metrol. Meas. Syst., 19, No. 4, 797–804 (2012).

    Google Scholar 

  31. J. Janiszewski, Ductility of selected metals under electromagnetic ring test loading conditions, Int. J. Solids Struct., 49, Nos. 7–8, 1001–1008 (2012).

    Article  Google Scholar 

  32. I. S. Anufriev, G. V. Kuznetsov, M. V. Piskunov, P. A. Strizhak, and M. Yu. Chernetskii, Conditions of explosive evaporation at the phase interface in an inhomogeneous droplet. Tech. Phys. Lett., 41, No. 8, 810–813 (2015).

    Article  Google Scholar 

  33. R. S. Volkov, M. V. Piskunov, G. V. Kuznetsov, and P. A. Strizhak, Water droplet with carbon particles moving through high temperature gases. J. Heat Transf., 138, No. 1, 014502, 1–5 (2016).

  34. V. I. Terekhov, V. V. Terekhov, N. E. Shishkin, and K. Ch. Bi, Experimental and numerical investigations of nonstationary evaporation of liquid droplets, J. Eng. Phys. Thermophys., 83, Issue 5, 883–890 (2010).

    Article  Google Scholar 

  35. B. I. Vorozhtsov, O. B. Kudryashova, A. N. Ishmatov, I. R. Akhmadeev, and G. V. Sakovich, Explosion generation of microatomized liquid-drop aerosols and their evolutions, J. Eng. Phys. Thermophys., 86, Issue 6, 1149–1169 (2010).

    Article  Google Scholar 

  36. A. G. Girin, Equations of the kinetics of droplet fragmentation in a high-speed gas flow, J. Eng. Phys. Thermophys., 84, Issue 2, 262–269 (2011).

    Article  Google Scholar 

  37. A. G. Girin, Distribution of dispersed droplets in fragmentation of the drop in a high-velocity gas flow, J. Eng. Phys. Thermophys., 84, Issue 4, 872–880 (2011).

    Article  Google Scholar 

  38. A. G. Girin, Laws governing the fragmentation of a droplet in a high-speed stream, J. Eng. Phys. Thermophys., 84, Issue 5, 1009–1015 (2011).

    Article  Google Scholar 

  39. S. A. Isaev, P. A. Baranov, Yu. S. Prigorodov, A. G. Sudakov, and A. E. Usachov, Numerical analysis of the influence of the compressibility of a viscous gas on its turbulent flow around a cylinder with a circular vortex cells, J. Eng. Phys. Thermophys., 81, Issue 2, 351–358 (2008).

    Article  Google Scholar 

  40. S. A. Isaev and D. A. Lysenko, Testing of numerical methods, convective schemes, algorithms of flows, and grid structures by the example of a supersonic flow in a step-shaped channel with the use of the CFX and FLUENT packages, J. Eng. Phys. Thermophys., 82, Issue 2, 321–326 (2009).

    Article  Google Scholar 

  41. S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. A. Tereshkin, and A. E. Usachov, Simulation of the wind effect on an ensemble of high-rise buildings by means of multiblock computational technologies, J. Eng. Phys. Thermophys., 87, Issue 1, 112–123 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vysokomornaya.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 4, pp. 795–804, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysokomornaya, O.V., Kuznetsov, G.V., Piskunov, M.V. et al. Influence of the "Self-Radiation" of Combustion Products on the Intensity of Evaporation of an Inhomogeneous Water Droplet in the Flame. J Eng Phys Thermophy 89, 799–807 (2016). https://doi.org/10.1007/s10891-016-1439-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1439-z

Keywords

Navigation