Skip to main content
Log in

Temperature Correction in Probe Measurements

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This work is devoted to experimental investigations of a decaying plasma using Langmuir probes. The gas pressure, the discharge current, and the moment of afterglow were selected to obtain probe characteristics in collisionless, intermediate, and drifting regimes of motion of charged particles. The manner in which the shape of the voltampere characteristics changes on passage from the collisionless motion to diffusion motion has been shown. A detailed analysis has been made of the source of errors arising when orbital-motion formulas or the logarithmic-operation method are applied to processing of the probe curves. It has been shown that neglect of collisions of charged particles in the probe layer leads to an ion-density value overstated more than three times, an electron-temperature value overstated two times, and an ion temperature overstated three to nine times. A model of interaction of charged particles in the probe layer has been proposed for correction of the procedure of determining temperature. Such an approach makes it possible to determine the space-charge layer in the probe, and also the value of the self-consistent field. The use of the developed procedures gives good agreement between experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Smith, A. G. Dean, and N. G. Adams, Space charge fields in afterglow plasmas, J. Phys. D: Appl. Phys., 7, 1944−1962(1974).

    Article  Google Scholar 

  2. S. A. Gutsev, Investigation of the Evolution of Parameters of a Nonstationary Plasma in Electronegative Gases, Candidate′s Dissertation in Physics and Mathematics, St. Petersburg (1997).

  3. Yu. M. Kagan and V. I. Perel′, Probe methods of investigation of plasma, Usp. Fiz. Nauk, LXXXI, Issue 3, 409–452 (1963).

  4. Yu. M. Kagan, V. I. Perel′, and P. O. Ripatti, On determination of plasma parameters using a cylindrical probe, Vestn. LGU, No. 8, 129–135 (1955).

  5. Francis F. Chen, Electric probes, in: Plasma Diagnostics [Russian translation], Mir, Moscow (1967).

  6. J. Langmuir and H. Mott-Smith, Studies of electron discharges in gases at low pressures, Gen. Electr. Rev., 27, 449–538 (1924).

    Google Scholar 

  7. S. A. Gutsev, Theory of the Near-Probe Layer in an Ion-Ion Plasma, Deposited in VINITI RAN, No. 2956-В1997 (1997).

  8. M. J. Druyvesteyn, Der Niedervoltbogen, Z. Phys., Bd. 64, 781–798 (1930).

    Article  Google Scholar 

  9. J. B. Thompson, Electron energy distribution in plasmas oxygen and nitrogen, Proc. Roy. Soc. London, A262, 503–518 (1961).

    Article  Google Scholar 

  10. H. Amemiya, Probe in negative ion containing plasma, J. Phys. Soc. Jpn., 57, No. 3, 887–902 (1988).

    Article  Google Scholar 

  11. H. Amemiya, Diagnostics on plasma containing negative ions using probe and optogalvanics, IGPIG, Proceeding 3, Bohum, 88–99 (1993).

  12. H.-M. Katsch and E. Quandt, Production of negative hydrogen ions in a pulsed low pressure volume discharge, J. Phys. D: Appl. Phys., 25, 430–435 (1992).

    Article  Google Scholar 

  13. S. A. Gutsev, A. A. Kudryavtsev, and V. A. Romanenko, Formation of an ion-ion plasma as a result of the runaway of electrons in pulsed oxygen discharge pauses, Zh. Tekh. Fiz., 65, No. 11, 77–85 (1995).

    Google Scholar 

  14. S. A. Gutsev, Theory of the near-probe layer in electronegative gases, J. Eng. Phys. Thermophys., 73, Issue 2, 311–317 (2000).

    Article  Google Scholar 

  15. S. A. Gutsev, Investigation of the decaying plasma of electronegative gases, J. Eng. Phys. Thermophys., 75, Issue 2, 477–483 (2002).

    Article  Google Scholar 

  16. S. A. Gutsev, N. B. Kosykh, and A. A. Kudryavtsev, Account of collisions of charged particles in processing of probe curves, Vestn. SPbGU, Issue 4, 153–155 (2013).

  17. P. Langevin, Selected Works [Russian translation], IL, Moscow (1949).

    Google Scholar 

  18. R. Feynman, R. Leighton, and M. Sands, Electricity and Magnetism [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  19. S. A. Gutsev, N. B. Kosykh, and A. S. Chirtsov, Features of probe measurements in a decaying helium plasma, Pis′ma Zh. Tekh. Fiz., Issue 3, 64–67 (2012).

  20. Yu. P. Raizer, Gas-Discharge Physics [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  21. A. von Engel, Ionized Gases [Russian translation], GIF-ML, Moscow (1959).

    Google Scholar 

  22. V. I. Demidov, N. B. Kolokolov, and A. A. Kudryavtsev, Probe Methods in Low-Temperature-Plasma Investigations [in Russian], Énergoatomizdat, Moscow (1996).

    Google Scholar 

  23. D. B. Bel′skii, S. A. Gutsev, and N. B. Kosykh, Certain features of probe measurements in a decaying helium plasma, Vestn. SPbGU, Issue 1, 254–261 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gutsev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 5, pp. 1127–1137, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutsev, S.A. Temperature Correction in Probe Measurements. J Eng Phys Thermophy 88, 1163–1174 (2015). https://doi.org/10.1007/s10891-015-1296-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1296-1

Keywords

Navigation