Skip to main content
Log in

Global Stability in a Two-species Attraction–Repulsion System with Competitive and Nonlocal Kinetics

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper deals with a two-species attraction–repulsion chemotaxis system

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\Delta u-\xi _{1}\nabla \cdot (u\nabla v)+\chi _{1}\nabla \cdot (u\nabla z)+f_{1}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau v_{t}=\Delta v+w-v,&(x,t)\in \Omega \times (0,\infty ),\\&w_t=\Delta w-\xi _{2}\nabla \cdot (w\nabla z)+\chi _{2}\nabla \cdot (w\nabla v)+f_{2}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau z_{t}=\Delta z+u-z,&(x,t)\in \Omega \times (0,\infty ), \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smoothly bounded domain \(\Omega \subseteq {\mathbb {R}}^{n}\), where \(\tau \in \{0,1\},\xi _{i},\chi _{i}>0\) and \(f_{i}(u,w)(i=1,2)\) satisfy

$$\begin{aligned} \left\{ \begin{aligned}&f_{1}(u,w)=u\bigg (a_{0}-a_{1}u-a_{2}w+a_{3}\int _{\Omega }udx+a_{4}\int _{\Omega }wdx\bigg ),\\&f_{2}(u,w)=w\bigg (b_{0}-b_{1}u-b_{2}w+b_{3}\int _{\Omega }udx+b_{4}\int _{\Omega }wdx\bigg )\\ \end{aligned} \right. \end{aligned}$$

with \(a_{i},b_{i}>0(i=0,1,2),a_{j},b_{j}\in {\mathbb {R}}(j=3,4)\). It is proved that in any space dimension \(n\ge 1\), the above system possesses a unique global and uniformly bounded classical solution regardless of \(\tau =0\) or \(\tau =1\) under some suitable assumptions. Moreover, by constructing Lyapunov functionals, we establish the globally asymptotic stabilization of coexistence and semi-coexistence steady states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Availability of Data and Materials

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial diffferential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MATH  Google Scholar 

  3. Alikakos, N.: \( L^{p} \)-bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Equ. 4, 827–868 (1979)

    Article  MATH  Google Scholar 

  4. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Budrene, E., Berg, H.: Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991)

    Article  Google Scholar 

  6. Burger, M., Francesco, M., Dolak, Y.: The Keller–Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion. SIAM J. Math. Anal. 38, 1288–1315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaplain, M., Logas, G.: Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15, 1685–1734 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

  9. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heihoff, F.: On the existence of global smooth solutions to the parabolic-elliptic Keller–Segel system with irregular initial data. J. Dyn. Differ. Equ. 9, 1–25 (2021)

    Google Scholar 

  11. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, R., Zheng, P.: On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production. Discrete Contin. Dyn. Syst. Ser. B 12, 7227–7244 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, R., Zheng, P., Gao, Z.: Boundedness of solutions in a quasilinear chemo-repulsion system with nonlinear signal production. Evol. Equ. Control Theory 11, 2209–2219 (2022)

    Article  MathSciNet  Google Scholar 

  14. Hu, R., Zheng, P., Shan, W.: On a two-species attraction-repulsion chemotaxis system with nonlocal terms, preprint

  15. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurt, H., Shen, W.: Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. SIAM J. Math. Anal. 53, 973–1003 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, S., Muneoka, K.: Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev. Cell. 211, 335–347 (1999)

    Google Scholar 

  19. Lin, K., Xiang, T.: On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. Calc. Var. 59, 108 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, K., Xiang, T.: On global solutions and blow-up for a short-ranged chemical signaling loop. J. Nonlinear Sci. 29, 551–591 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, A., Dai, B.: Blow-up vs boundedness in a two-species attraction-repulsion chemotaxis system with two chemicals. J. Math. Phys. 62, 111508 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, A., Dai, B.: Boundedness and stabilization in a two-species chemotaxis system with two chemicals. J. Math. Anal. Appl. 506, 125609 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, A., Dai, B., Chen, Y.: Boundedness in a two-species attraction-repulsion chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B 27, 6037–6062 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mizukami, M.: Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst. Ser. B 22, 2301–2319 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Murray, J.: Mathematical Biology. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  27. Nagai, T.: Blow-up of radially symmetric solutions of a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Negreanu, M., Tello, J.: On a competitive system under chemotactic effects with nonlocal terms. Nonlinearity 26, 1083–1103 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Osaki, K., Yagi, A.: Finite dimensional attractors for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Painter, K.: Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bull. Math. Biol. 71, 1117–1147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Painter, K., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Petter, G., Byrne, H., Mcelwain, D., Norbury, J.: A model of wound healing and angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (2003)

    Article  MATH  Google Scholar 

  33. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blow up in a finite and the infinite time. Methods Appl. Anal. 8, 349–367 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stinner, C., Tello, J., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tello, J., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Temam, R.: Infinite-Dimensional Dynamical Systemsin Mechanics and Physics, 2nd edition, Appl. Math. Sci. vol. 68, Springer, New York (1997)

  38. Tu, X., Mu, C., Zheng, P., Lin, K.: Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete Contin. Dyn. Syst. Ser. A 38, 3617–3636 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, L., Mu, C.: A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B 25, 4585–4601 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Wang, W., Zhuang, M., Zheng, S.: Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source. J. Differ. Equ. 264, 2011–2027 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, H., Wang, W., Zheng, S.: Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals. Nonlinearity 31, 502–514 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, Q.: Competitive exclusion for a two-species chemotaxis system with two chemicals. Appl. Math. Lett. 83, 27–32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Q., Liu, X., Yang, X.: Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals. J. Math. Phys. 58, 111504 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng, P.: Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete Contin. Dyn. Syst. 41, 1207–1223 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zheng, P., Hu, R.: Boundedness and stabilization in a two-species attraction-repulsion chemotaxis-competition system, preprint

  51. Zheng, P., Mu, C.: Global boundedness in a two-competing-species chemotaxis system with two chemicals. Acta Appl. Math. 148, 157–177 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zheng, P., Mu, C., Mi, Y.: Global stability in a two-competing-species chemotaxis system with two chemicals. Differ. Integral Equ. 31, 547–558 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Zheng, P., Willie, R., Mu, C.: Global boundedness and stabilization in a two-competing-species chemotaxis-fluid system with two chemicals. J. Dyn. Differ Equ. 32, 1371–1399 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zheng, P., Xiang, Y., Xing, J.: On a two-species chemotaxis system with indirect signal production and general competition terms. Math. Models Methods Appl. Sci. 32, 1385–1430 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank the editor and anonymous reviewers for their insightful and constructive comments. Pan Zheng is also deeply grateful to Professor Renjun Duan for his help and support at The Chinese University of Hong Kong.

Funding

The work is partially supported by National Natural Science Foundation of China (Grant Nos: 11601053, 11526042), Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0082), China-South Africa Young Scientist Exchange Project in 2020, The Hong Kong Scholars Program (Grant Nos: XJ2021042, 2021-005), Young Hundred Talents Program of CQUPT in 2022–2024, Chongqing Municipal Education Commission Science and Technology Research Project (Grant No. KJZD-K202200602) and Chongqing Postgraduate Research and Innovation Project in 2022 (Grant Nos: CYS22451).

Author information

Authors and Affiliations

Authors

Contributions

Runlin Hu: Writing the original draft; Pan Zheng: Writing, Editing and Revising.

Corresponding author

Correspondence to Pan Zheng.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare that this work does not have any conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Zheng, P. Global Stability in a Two-species Attraction–Repulsion System with Competitive and Nonlocal Kinetics. J Dyn Diff Equat (2022). https://doi.org/10.1007/s10884-022-10215-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-022-10215-5

Keywords

Mathematics Subject Classification

Navigation