Skip to main content
Log in

Blow-Up Rate Estimates and Liouville Type Theorems for a Semilinear Heat Equation with Weighted Source

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the Liouville-type theorem for the semilinear parabolic equation \(u_t-\Delta u =|x|^a u^p\) with \(p>1\) and \(a\in {\mathbb R}\). Relying on the recent result of Quittner (Math Ann, doi:10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension \(N=2\), in the class of nonnegative bounded solutions. We also provide a partial result in dimension \(N\ge 3\). As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, K., Souplet, P.: Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete Contin. Dyn. Syst. 26(2), 665–689 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Andreucci, D., Tedeev, A.F.: Universal bounds at the blow-up time for nonlinear parabolic equations. Adv. Differ. Equ. 10(1), 89–120 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Poláčik, P., Quittner, P.: Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations. J. Eur. Math. Soc. (JEMS) 13(1), 219–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bidaut-Véron, M.-F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term. In: Gauthier-Villars, (ed.) Equations Aux Dérivées Partielles et Applications. Sci. Med., pp. 189–198. Elsevier, Paris (1998)

    Google Scholar 

  5. Bidaut-Veron, M.-F.: Local behaviour of the solutions of a class of nonlinear elliptic systems. Adv. Differ. Equ. 5(1–3), 147–192 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and related models. Applied Mathematical Sciences 183. Springer, New York (2013)

    MATH  Google Scholar 

  7. Deng, Y., Li, Y., Yang, F.: On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem. J. Differ. Equ. 228(2), 507–529 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dupaigne, L., Ponce, A.C.: Singularities of positive supersolutions in elliptic PDEs. Sel. Math. (N.S.) 10(3), 341–358 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Filippas, S., Tertikas, A.: On similarity solutions of a heat equation with a nonhomogeneous nonlinearity. J. Differ. Equ. 165(2), 468–492 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Földes, J.: Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems. Czechoslov. Math. J. 61(136), 169–198 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34(4), 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equ. 6(8), 883–901 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giga, Y.: A bound for global solutions of semilinear heat equations. Commun. Math. Phys. 103(3), 415–421 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giga, Y., Kohn, R.V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36(1), 1–40 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J. 53(2), 483–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, J.-S., Lin, C.-S., Shimojo, M.: Blow-up behavior for a parabolic equation with spatially dependent coefficient. Dyn. Syst. Appl. 19(3–4), 415–433 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Guo, J.-S., Shimojo, M.: Blowing up at zero points of potential for an initial boundary value problem. Commun. Pure Appl. Anal. 10(1), 161–177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hénon, M.: Numerical experiments on the stability of spherical stellar systems. Astronom. Astrophys. 24, 229–238 (1973)

    Google Scholar 

  20. Herrero, M.A., Velázquez, J.J.L.: Explosion de solutions d’équations paraboliques semilinéaires supercritiques. C. R. Acad. Sci. Paris Sér. I Math. 319(2), 141–145 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Hirose, M.: Existence of global solutions for a semilinear parabolic Cauchy problem. Differ. Integral Equ. 21(7–8), 623–652 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Hu, B.: Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition. Differ. Integral Equ. 9(5), 891–901 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Lai, B., Li, Y.: On the semistability of the minimal positive steady state for a nonhomogeneous semilinear Cauchy problem. Math. Res. Lett. 15(5), 923–939 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levine, H.A.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \(Pu_{t}=-Au+{ F}(u)\). Arch. Rational Mech. Anal. 51, 371–386 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matano, H., Merle, F.: On nonexistence of type II blowup for a supercritical nonlinear heat equation. Commun. Pure Appl. Math. 57(11), 1494–1541 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matano, H., Merle, F.: Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 256(4), 992–1064 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matos, J.: Unfocused blow up solutions of semilinear parabolic equations. Discret. Contin. Dyn. Syst. 5(4), 905–928 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitidieri, E., Pohozaev, S.I.: A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234, 1–384 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Mizoguchi, N.: Rate of type II blowup for a semilinear heat equation. Math. Ann. 339(4), 839–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Phan, Q.H.: Singularity and blow-up estimates via Liouville-type theorems for Hardy-Henon parabolic equations. J. Evol. Equ. 13, 411–442 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Phan, Q.H., Souplet, P.: Liouville-type theorems and bounds of solutions of Hardy-Hénon equations. J. Differ. Equ. 252(3), 2544–2562 (2012)

    Article  MATH  Google Scholar 

  32. Piccirillo, A.M., Toscano, L., Toscano, S.: Blow-up results for a class of first-order nonlinear evolution inequalities. J. Differ. Equ. 212(2), 319–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pinsky, R.G.: Existence and nonexistence of global solutions for \(u_t=\Delta u+a(x)u^p\) in \({ R}^d\). J. Differ. Equ. 133(1), 152–177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64(8), 1679–1689 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139(3), 555–579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations. Indiana Univ. Math. J. 56(2), 879–908 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qi, Y.-W.: The critical exponents of parabolic equations and blow-up in \({R}^n\). Proc. Roy. Soc. Edinburgh Sect. A 128(1), 123–136 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Quittner, P.: Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure. Math. Ann. (2015). doi:10.1007/s00208-015-1219-7

  39. Quittner, P., Souplet, P.: Superlinear parabolic problems. Birkhäuser Advanced Texts: Basler Lehrbücher. Blow-up, global existence and steady states. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

  40. Quittner, P., Souplet, P.: Parabolic Liouville-type theorems via their elliptic counterparts. Discrete Contin. Dyn. Syst., 1206–1213 (2011)

  41. Schweyer, R.: Type II blow-up for the four dimensional energy critical semi linear heat equation. J. Funct. Anal. 263(12), 3922–3983 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Suzuki, R.: Existence and nonexistence of global solutions of quasilinear parabolic equations. J. Math. Soc. Japan 54(4), 747–792 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, X.: On the Cauchy problem for reaction-diffusion equations. Trans. Am. Math. Soc. 337(2), 549–590 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xing, R.: The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems. Acta Math. Sin. (Engl. Ser.) 25(3), 503–518 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thank Professor Philippe Souplet for his valuable suggestions, and the referee for a careful reading and important remarks. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2014.06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc Hung Phan.

Appendix

Appendix

Lemma 4.1

Assume \(N\ge 2\) and \(a>-2\), we consider problem

$$\begin{aligned} w_s=\Delta w-\frac{1}{2}y.\nabla w-\beta w+|y|^aw^p, \quad (y,s)\in {\mathbb R}^N\times [0,T), \end{aligned}$$
(19)

with nonnegative initial datum \(w_0\in L^\infty ({\mathbb R}^N)\). We define the weighted energy functional by

$$\begin{aligned} E(w)=\int _{{\mathbb R}^N}\Big (\frac{1}{2}|\nabla w|^2+\frac{\beta }{2}w^2-\frac{1}{p+1}|y|^aw^{p+1}\Big )\rho dy \end{aligned}$$
(20)

where \(\rho (y)=e^{-|y|^2/4}\). Assume \(E(w_0)<\infty \), then for any \(t_1, t_2\in [0,T)\), \(t_1<t_2\) we have

$$\begin{aligned} \int _{t_1}^{t_2}\int _{{\mathbb R}^N}w_s^2(y,s)\rho (y)dyds\le E(w(t_1))-E(w(t_2)). \end{aligned}$$
(21)

The proof of Lemma 4.1 is standard when \(a\ge 0\). For general case, we refer the reader to [30, Lemma 3.1] for the similar arguments.

Lemma 4.2

Assume \(N\ge 2\) and \(a>-2\). Let w be solution of the problem (19) in \({\mathbb R}^N\times [0,T_{\max })\) with nonnegative initial datum \(w_0\in L^\infty ({\mathbb R}^N)\). We define the weighted energy functional (20). If \(E(w_0)<0\) then \(T_{\max }<\infty \).

Proof

We follow the concavity method in [24] (see also [39, Theorem 17.6]). Assume that \(T_{\max }(u_0)=\infty \). Let \(M(s)=\frac{1}{2}\int _{0}^{s}\int _{{\mathbb R}^N}w^2(y,\tau )\rho (y)dy d\tau \) then

$$\begin{aligned} M''(s)&=\int _{{\mathbb R}^N}w(s)w_s(s)\rho dy\\&=-\int _{{\mathbb R}^N}|\nabla w(s)|^2\rho dy-\beta \int _{{\mathbb R}^N}w^2(s)\rho dy +\int _{{\mathbb R}^N}|y|^aw^{p+1}(s)\rho dy\\&=-(p+1)E(w(s))+\frac{p-1}{2}\int _{{\mathbb R}^N}|\nabla w(s)|^2\rho dy+\beta \frac{p-1}{2}\int _{{\mathbb R}^N}w^2(s)\rho dy\\&\ge -(p+1)E(w_0)>0. \end{aligned}$$

Consequently, \(M'(s)\rightarrow \infty \) and \(M(s)\rightarrow \infty \) as \(s\rightarrow \infty \). Moreover,

$$\begin{aligned} M''(s)&\ge -(p+1)E(w(s))\ge -(p+1)E(w(s))+(p+1)E(w_0)\\&\ge (p+1)\int _{0}^{s}\int _{{\mathbb R}^N}w_s^2(y,\tau )\rho (y) dyd\tau , \end{aligned}$$

hence

$$\begin{aligned} M(s)M''(s)&\ge \frac{p+1}{2}\left( \int _{0}^{s}\int _{{\mathbb R}^N}w_s^2(y,\tau )\rho (y) dyd\tau \right) \left( \int _{0}^{s}\int _{{\mathbb R}^N}w^2(y,\tau )\rho (y) dyd\tau \right) \\&\ge \frac{p+1}{2}\left( \int _{0}^{s}\int _{{\mathbb R}^N}w(y,\tau )w_s(y,\tau )\rho (y)dyd\tau \right) ^2\\&=\frac{p+1}{2}\left( M'(s)-M'(0)\right) ^2. \end{aligned}$$

Since \(M'(s)\rightarrow \infty \) as \(s\rightarrow \infty \), there exist \(\alpha , s_0>0\) such that

$$\begin{aligned} M(s)M''(s)\ge (1+\alpha )(M'(s))^2, \quad s\ge s_0. \end{aligned}$$

This guarantees that the nonincreasing function \(s\mapsto M^{-\alpha }(s)\) is concave on \([s_0,\infty )\) which contradicts the fact that \(M^{-\alpha }(s)\rightarrow 0\) as \(s\rightarrow \infty \). \(\square \)

Lemma 4.3

Assume \(N\ge 2\) and \(-2<a\le 0\). Consider the problem (6) with \(u_0\) radial nonincreasing. Then u is radial nonincreasing in \({\mathbb R}^N\times [0,T)\).

Proof

The proof is similar to [39, Proposition 52.17]. We recall that (see [30, Lemma A.2]) u satisfies the integral equation

$$\begin{aligned} u(t)=e^{t\Delta }u_0+\int _{0}^{t}e^{(t-s)\Delta }(|.|^au^p(s))ds \end{aligned}$$

The conclusion follows from the fact that \(e^{t\Delta }\) preserves the radial nonincreasing property and \(a\le 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, Q.H. Blow-Up Rate Estimates and Liouville Type Theorems for a Semilinear Heat Equation with Weighted Source. J Dyn Diff Equat 29, 1131–1144 (2017). https://doi.org/10.1007/s10884-015-9489-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9489-z

Keywords

Mathematics Subject Classification

Navigation