Skip to main content

Advertisement

Log in

Intraoperative feasibility of bulbocavernosus reflex monitoring during untethering surgery in infants and children

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Bulbocavernosus reflex (BCR) monitoring is used to assess the integrity of urinary and bowel function. In this study, we evaluated the feasibility of BCR monitoring during untethering surgery in infants and children to predict postoperative urinary and bowel dysfunction. The records of 22 patients ranging from 4 days to 10 years old (mean 2.7 ± 3.3 years) were reviewed. Anesthesia was maintained by propofol or sevoflurane/opioid without neuromuscular blockade. BCR waveforms induced by electrical stimulation (20–40 mA, train-of-four pulses with 500 Hz) to the penis or clitoris were recorded from bilateral external anal sphincters. To assess the sensitivity and specificity of BCR monitoring, we investigated the association between a significant continuous decrease in BCR amplitude at the end of surgery and postoperative urinary and bowel dysfunction after surgery. Reproducible baseline BCR waveforms were successfully recorded in 20 of 22 patients (90.9%). A significant continuous decrease in BCR amplitude was observed in 8 patients. The results of intraoperative BCR monitoring included three true-positives, twelve true-negatives, five false-positives, and zero false-negatives. Therefore, the sensitivity and specificity of BCR monitoring used to predict postoperative urinary and bowel dysfunction were 100 and 70.6%, respectively. BCR monitoring during untethering surgery in infants and children under general anesthesia was found to be a feasible method to prevent postoperative urinary and bowel dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pang D, Wilberger JE Jr. Tethered cord syndrome in adults. J Neurosurg. 1982;57:32–47.

    Article  CAS  PubMed  Google Scholar 

  2. Lee GY, Paradiso G, Tator CH, Gentili F, Massicotte EM, Fehlings MG. Surgical management of tethered cord syndrome in adults: indications, techniques, and long-term outcomes in 60 patients. J Neurosurg Spine. 2006;4:123–31.

    Article  CAS  PubMed  Google Scholar 

  3. Hüttmann S, Krauss J, Collmann H, Sörensen N, Roosen K. Surgical management of tethered spinal cord in adults: report of 54 cases. J Neurosurg. 2001;95(2 Suppl):173–8.

    PubMed  Google Scholar 

  4. Iskandar BJ, Fulmer BB, Hadley MN, Oakes WJ. Congenital tethered spinal cord syndrome in adults. J Neurosurg. 1998;88:958–61.

    Article  CAS  PubMed  Google Scholar 

  5. van Leeuwen R, Notermans NC, Vandertop WP. Surgery in adults with tethered cord syndrome: outcome study with independent clinical review. J Neurosurg. 2001;94(2 Suppl):205–9.

    PubMed  Google Scholar 

  6. Pierre-Kahn A, Zerah M, Renier D, Cinalli G, Sainte-Rose C, Lellouch-Tubiana A, Brunelle F, Le Merrer M, Giudicelli Y, Pichon J, Kleinknecht B, Nataf F. Congenital lumbosacral lipomas. Childs Nerv Syst. 1997;13:298–334.

    Article  CAS  PubMed  Google Scholar 

  7. Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst. 2013;29:1611–24.

    Article  PubMed  Google Scholar 

  8. Kothbauer KF, Novak K. Intraoperative monitoring for tethered cord surgery: an update. Neurosurg Focus. 2004;16:E8.

    Article  PubMed  Google Scholar 

  9. Skinner SA, Vodušek DB. Intraoperative recording of the bulbocavernosus reflex. J Clin Neurophysiol. 2014;31:313–22.

    Article  PubMed  Google Scholar 

  10. Clemens JQ. Basic bladder neurophysiology. Urol Clin North Am. 2010;37:487–94.

    Article  PubMed  Google Scholar 

  11. Hauck EF, Schwefer M, Wittkowski W, Bothe HW. Measurements and mapping of 282,420 nerve fibers in the S1-5 nerve roots. J Neurosurg Spine. 2009;11:255–63.

    Article  PubMed  Google Scholar 

  12. Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery 1997;40:88–92.

    CAS  PubMed  Google Scholar 

  13. Sala F, Krzan MJ, Deletis V. Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst. 2002;18:264–87.

    Article  PubMed  Google Scholar 

  14. Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst. 2010;26:473–90.

    Article  PubMed  Google Scholar 

  15. Husain AM, Watkins LR, Muh CR. Tetherd cord surgery. In: Husain AM, editor. A practical approach to neurophysiologic intraoperative monitoring. 2nd ed. New York: Demos Medical Publishing; 2015. pp. 142–55.

    Google Scholar 

  16. Tu A, Steinbok P. Occult tethered cord syndrome: a review. Childs Nerv Syst. 2013;29:1635–40.

    Article  PubMed  Google Scholar 

  17. Vodusek DB, Janko M. The bulbocavernosus reflex. A single motor neuron study. Brain 1990;113:813–20.

    Article  PubMed  Google Scholar 

  18. Geser F, Wenning GK. Primary autonomic failure. In: Schapira AHV, editor. Neurology and clinical neuroscience. Philadelphia: Mosby Elsevier; 2007. pp. 372–93.

    Google Scholar 

  19. Bors E, Blinn KA. Bulbocavernosus reflex. J Urol. 1959;82:128–30.

    Article  CAS  PubMed  Google Scholar 

  20. Jeleazcov C, Schmidt J, Schmitz B, Becke K, Albrecht S. EEG variables as measures of arousal during propofol anaesthesia for general surgery in children: rational selection and age dependence. Br J Anaesth. 2007;99:845–54.

    Article  CAS  PubMed  Google Scholar 

  21. Tirel O, Wodey E, Harris R, Bansard JY, Ecoffey C, Senhadji L. The impact of age on bispectral index values and EEG bispectrum during anaesthesia with desflurane and halothane in children. Br J Anaesth. 2006;96:480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davis PJ, Cladis FP, Motoyama K. Smith’s anesthesia for infants and children. 8th ed. Philadelphia: Elsevier Mosby; 2011.

    Google Scholar 

  23. Govindarajan R, Babalola O, Gad-El-Kareem M, Kodali NS, Aronson J, Abadir A. Intraoperative wake-up test in neonatal neurosurgery. Paediatr Anaesth. 2006;16:451–3.

    Article  PubMed  Google Scholar 

  24. Bannister CF, Brosius KK, Sigl JC, Meyer BJ, Sebel PS. The effect of bispectral index monitoring on anesthetic use and recovery in children anesthetized with sevoflurane in nitrous oxide. Anesth Analg. 2001;92:877–81.

    Article  CAS  PubMed  Google Scholar 

  25. Hayashi H, Kawaguchi M, Yamamoto Y, Inoue S, Koizumi M, Ueda Y, Takakura Y, Furuya H. Evaluation of reliability of post-tetanic motor-evoked potential monitoring during spinal surgery under general anesthesia. Spine (Phila Pa 1976) 2008;33:E994–1000.

    Article  Google Scholar 

  26. Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA. The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg. 2006;103:316–21.

    Article  CAS  PubMed  Google Scholar 

  27. Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A. Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr. 2011;7:331–7.

    Article  PubMed  Google Scholar 

  28. Rodi Z, Vodusek DB. Intraoperative monitoring of the bulbocavernosus reflex: the method and its problems. Clin Neurophysiol. 2001;112:879–83.

    Article  CAS  PubMed  Google Scholar 

  29. Hernández-Palazón J, Izura V, Fuentes-García D, Piqueras-Pérez C, Doménech-Asensi P, Falcón-Araña L. Comparison of the effects of propofol and sevoflurane combined with remifentanil on transcranial electric motor-evoked and somatosensory-evoked potential monitoring during brainstem surgery. J Neurosurg Anesthesiol. 2015;27:282–8.

    Article  PubMed  Google Scholar 

  30. Li Y, Meng L, Peng Y, Qiao H, Guo L, Han R, Gelb AW. Effects of dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: a randomized controlled trial. BMC Anesthesiol. 2016;16:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Skinner S, Chiri CA, Wroblewski J, Transfeldt EE. Enhancement of the bulbocavernosus reflex during intraoperative neurophysiological monitoring through the use of double train stimulation: a pilot study. J Clin Monit Comput. 2007;21:31–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironobu Hayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinjo, T., Hayashi, H., Takatani, T. et al. Intraoperative feasibility of bulbocavernosus reflex monitoring during untethering surgery in infants and children. J Clin Monit Comput 33, 155–163 (2019). https://doi.org/10.1007/s10877-018-0127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0127-2

Keywords

Navigation