Skip to main content

Advertisement

Log in

Automated, continuous and non-invasive assessment of pulse pressure variations using CNAP® system

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Non-invasive respiratory variations in arterial pulse pressure using infrared-plethysmography (PPVCNAP) are able to predict fluid responsiveness in mechanically ventilated patients. However, they cannot be continuously monitored. The present study evaluated a new algorithm allowing continuous measurements of PPVCNAP (PPVCNAPauto) (CNSystem, Graz, Austria). Thirty-five patients undergoing vascular surgery were studied after induction of general anaesthesia. Stroke volume was measured using the VigileoTM/FloTracTM. Invasive pulse pressure variations were manually calculated using an arterial line (PPVART) and PPVCNAPauto was continuously displayed. PPVART and PPVCNAPauto were simultaneously recorded before and after volume expansion (500 ml hydroxyethylstarch). Subjects were defined as responders if stroke volume increased by ≥15 %. Twenty-one patients were responders. Before volume expansion, PPVART and PPVCNAPauto exhibited a bias of 0.1 % and limits of agreement from −7.9 % to 7.9 %. After volume expansion, PPVART and PPVCNAPauto exhibited a bias of −0.4 % and limits of agreement from −5.3 % to 4.5 %. A 14 % baseline PPVART threshold discriminated responders with a sensitivity of 86 % (95 % CI 64–97 %) and a specificity of 100 % (95 % CI 77–100 %). Area under the receiver operating characteristic (ROC) curve for PPVART was 0.93 (95 % CI 0.79–0.99). A 15 % baseline PPVCNAPauto threshold discriminated responders with a sensitivity of 76% (95 % CI 53–92 %) and a specificity of 93 % (95 % CI 66–99 %). Area under the ROC curves for PPVCNAPauto was 0.91 (95 % CI 0.76–0.98), which was not different from that for PPVART. When compared with PPVART, PPVCNAPauto performs satisfactorily in assessing fluid responsiveness in hemodynamically stable surgical patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.

    Article  PubMed  Google Scholar 

  2. Vallet B, Blanloeil Y, Cholley B, Orliaguet G, Pierre S, Tavernier B. Socie te franc aise d’anesthe sie et de re a. Guidelines for perioperative haemodynamic optimization. Ann Fr Anesth Reanim. 2013;32:e151–8.

    Article  CAS  PubMed  Google Scholar 

  3. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  4. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, Pradl R, Stepan M. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14:R118.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO Jr, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mayer J, Boldt J, Mengistu AM, Rohm KD, Suttner S. Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care. 2010;14:R18.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ramsingh DS, Sanghvi C, Gamboa J, Cannesson M, Applegate RL 2nd. Outcome impact of goal directed fluid therapy during high risk abdominal surgery in low to moderate risk patients: a randomized controlled trial. J Clin Monit Comput. 2013;27:249–57.

    Article  PubMed  Google Scholar 

  8. Biais M, Ouattara A, Janvier G, Sztark F. Case scenario: respiratory variations in arterial pressure for guiding fluid management in mechanically ventilated patients. Anesthesiology. 2012;116:1354–61.

    Article  PubMed  Google Scholar 

  9. Cannesson M. Arterial pressure variation and goal-directed fluid therapy. J Cardiothorac Vasc Anesth. 2010;24:487–97.

    Article  PubMed  Google Scholar 

  10. Bogert LW, van Lieshout JJ. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol. 2005;90:437–46.

    Article  PubMed  Google Scholar 

  11. Penaz J, Voigt A, Teichmann W. Contribution to the continuous indirect blood pressure measurement. Z Gesamte Inn Med. 1976;31:1030–3.

    CAS  PubMed  Google Scholar 

  12. Epstein RH, Bartkowski RR, Huffnagle S. Continuous noninvasive finger blood pressure during controlled hypotension. A comparison with intraarterial pressure. Anesthesiology. 1991;75:796–803.

    CAS  PubMed  Google Scholar 

  13. Gibbs NM, Larach DR, Derr JA. The accuracy of Finapres noninvasive mean arterial pressure measurements in anesthetized patients. Anesthesiology. 1991;74:647–52.

    Article  CAS  PubMed  Google Scholar 

  14. Stokes DN, Clutton-Brock T, Patil C, Thompson JM, Hutton P. Comparison of invasive and non-invasive measurements of continuous arterial pressure using the Finapres. Br J Anaesth. 1991;67:26–35.

    Article  CAS  PubMed  Google Scholar 

  15. Hahn R, Rinosl H, Neuner M, Kettner SC. Clinical validation of a continuous non-invasive haemodynamic monitor (CNAP™ 500) during general anaesthesia. Br J Anaesth. 2012;108:581–5.

    Article  CAS  PubMed  Google Scholar 

  16. Ilies C, Kiskalt H, Siedenhans D, Meybohm P, Steinfath M, Bein B, Hanss R. Detection of hypotension during Caesarean section with continuous non-invasive arterial pressure device or intermittent oscillometric arterial pressure measurement. Br J Anaesth. 2012;109:413–9.

    Article  CAS  PubMed  Google Scholar 

  17. Schramm C, Huber A, Plaschke K. The accuracy and responsiveness of continuous noninvasive arterial pressure during rapid ventricular pacing for transcatheter aortic valve replacement. Anesth Analg. 2013;117:76–82.

    Article  PubMed  Google Scholar 

  18. Biais M, Stecken L, Ottolenghi L, Roullet S, Quinart A, Masson F, Sztark F. The ability of pulse pressure variations obtained with CNAP device to predict fluid responsiveness in the operating room. Anesth Analg. 2011;113:523–8.

    PubMed  Google Scholar 

  19. Monnet X, Dres M, Ferre A, Le Teuff G, Jozwiak M, Bleibtreu A, Le Deley MC, Chemla D, Richard C, Teboul JL. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth. 2012;109:330–8.

    Article  CAS  PubMed  Google Scholar 

  20. Minto C, Schnider T, Egan T, Youngs E, Lemmens H, Gambus P, Billard V, Hoke J, Moore K, Hermann D, Muir K, Mandema J, Shafer S. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model developpement. Anesthesiology. 1997;86:10–23.

    Article  CAS  PubMed  Google Scholar 

  21. Minto C, Schnider T, Shafer S. Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997;86:24–33.

    Article  CAS  PubMed  Google Scholar 

  22. Schnider T, Minto C, Shafer S, Gambus P, Andresen C, Goodale D, Youngs E. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1506–16.

    Article  Google Scholar 

  23. Fortin J, Wellisch A, Maier K. CNAP - Evolution of Continuous Non-Invasive Arterial Blood Pressure Monitoring. Biomed Tech (Berl). 2013. doi:10.1515/bmt-2013-4179.

    Google Scholar 

  24. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.

    Article  CAS  PubMed  Google Scholar 

  25. Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126:1001–4.

    CAS  PubMed  Google Scholar 

  26. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.

    Article  Google Scholar 

  27. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–43.

    Article  CAS  PubMed  Google Scholar 

  28. Biais M, Bernard O, Ha JC, Degryse C, Sztark F. Abilities of pulse pressure variations and stroke volume variations to predict fluid responsiveness in prone position during scoliosis surgery. Br J Anaesth. 2010;104:407–13.

    Article  CAS  PubMed  Google Scholar 

  29. Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112:1023–40.

    Article  PubMed  Google Scholar 

  30. Prys-Roberts C. Cardiovascular monitoring in patients with vascular disease. Br J Anaesth. 1981;53:767–76.

    Article  CAS  PubMed  Google Scholar 

  31. Van Bergen FH, Weatherhead DS, Treloar AE, Dobkin AB, Buckley JJ. Comparison of indirect and direct methods of measuring arterial blood pressure. Circulation. 1954;10:481–90.

    Article  Google Scholar 

  32. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cohen A, Reyes R, Kirk M, Fulks RM. Osler’s nodes, pseudoaneurysm formation, and sepsis complicating percutaneous radial artery cannulation. Crit Care Med. 1984;12:1078–9.

    Article  CAS  PubMed  Google Scholar 

  34. Evans PJ, Kerr JH. Arterial occlusion after cannulation. Br Med J. 1975;3:197–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McEllistrem RF, O’Toole DP, Keane P. Post-cannulation radial artery aneurysm–a rare complication. Can J Anaesth. 1990;37:907–9.

    Article  CAS  PubMed  Google Scholar 

  36. Slogoff S, Keats AS, Arlund C. On the safety of radial artery cannulation. Anesthesiology. 1983;59:42–7.

    Article  CAS  PubMed  Google Scholar 

  37. Lansdorp B, Ouweneel D, de Keijzer A, van der Hoeven JG, Lemson J, Pickkers P. Non-invasive measurement of pulse pressure variation and systolic pressure variation using a finger cuff corresponds with intra-arterial measurement. Br J Anaesth. 2011;107:540–5.

    Article  CAS  PubMed  Google Scholar 

  38. Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, Bastien O, Lehot JJ. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology. 2007;106:1105–11.

    Article  PubMed  Google Scholar 

  39. Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–9.

    Article  PubMed  Google Scholar 

  40. Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, Lehot JJ. Does the Pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008;106:1189–94.

    Article  PubMed  Google Scholar 

  41. Biais M, Cottenceau V, Petit L, Masson F, Cochard JF, Sztark F. Impact of norepinephrine on the relationship between pleth variability index and pulse pressure variations in ICU adult patients. Crit Care. 2011;15:R168.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, Lehot JJ. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101:200–6.

    Article  CAS  PubMed  Google Scholar 

  43. Loupec T, Nanadoumgar H, Frasca D, Petitpas F, Laksiri L, Baudouin D, Debaene B, Dahyot-Fizelier C, Mimoz O. Pleth variability index predicts fluid responsiveness in critically ill patients. Crit Care Med. 2011;39:294–9.

    Article  PubMed  Google Scholar 

  44. Biais M, Nouette-Gaulain K, Cottenceau V, Vallet A, Cochard JF, Revel P, Sztark F. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106:1480–6.

    Article  PubMed  Google Scholar 

  45. Biais M, Nouette-Gaulain K, Cottenceau V, Revel P, Sztark F. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101:761–8.

    Article  CAS  PubMed  Google Scholar 

  46. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA, Investigators C. Australian, New Zealand Intensive Care Society Clinical Trials G. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  47. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Soe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjaeldgaard AL, Fabritius ML, Mondrup F, Pott FC, Moller TP, Winkel P, Wetterslev J, Group ST, Scandinavian Critical Care Trials G. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 2012;367:124–34.

Download references

Acknowledgments

The authors thank Ray Cooke, Ph.D. (Assistant Professor and Director, Département Langues et Cultures, University of Bordeaux, Bordeaux, France) for reviewing this manuscript.

Author contribution

All authors have approved the submitted manuscript. MB conceived study design, performed data collection, data interpretation and analysis and wrote the manuscript. LS and AM: participated in the conception, recruitment, and interpretation of data. SR and AQ: participated in the recruitment and interpretation of data. FS participated in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Biais.

Ethics declarations

All procedures performed in this study were in accordance with the ethical standard of the local ethic committee and have been performed in accordance with the ethical standard as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Conflicts of interest

M.B received honoraria from Edwards Lifesciences and Pulsion Medical System as a lecturer. Other authors declare that they have no competing interests.

Financial disclosure

Only departmental funds were used for this study. No external funds were obtained. The manufacturers (CNSystem, Graz, Austria) provided the material free of charge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biais, M., Stecken, L., Martin, A. et al. Automated, continuous and non-invasive assessment of pulse pressure variations using CNAP® system. J Clin Monit Comput 31, 685–692 (2017). https://doi.org/10.1007/s10877-016-9899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-016-9899-4

Keywords

Navigation