Skip to main content
Log in

Evaluation of a fiber-optic technique for recording intramuscular pressure in the human leg

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

To evaluate a forward-sensing fiber-optic pressure technique for recording of intramuscular pressure (IMP) in the human leg and investigate factors that may influence IMP measurements used in diagnosing compartment syndromes. IMP in the tibialis anterior muscle was recorded simultaneously by a fiber-optic technique and needle-injection technique in 12 legs of 7 healthy subjects. Both measurement catheters were placed in parallel with the muscle fibers to the same depth, as verified by sonography. IMP recordings were performed at rest before, during and after applying a model of abnormally elevated IMP (simulated compartment syndrome). IMP was elevated by venous obstruction induced by a thigh tourniquet of a casted leg. IMP was also measured during injections of 0.1 ml of saline into the muscle through the catheters. IMP at baseline was 5.1 (SD = 2.6) mmHg measured with the fiber-optic technique and 7.1 (SD = 2.5) mmHg with the needle-injection technique (p < 0.001). It increased to 48.5 (SD = 6.9) mmHg and 47.6 (SD = 6.6) mmHg respectively, during simulated compartment syndrome. IMP increased significantly following injection of 0.1 ml of saline, measured by both techniques. It remained increased 1 min after injection. The fiber-optic technique was able to record pulse-synchronous IMP oscillations. The fiber-optic technique may be used for IMP measurements in a muscle with both normal and abnormally elevated IMP. It has good dynamic properties allowing for measurement of IMP oscillations. Saline injection used with needle-injection systems to ensure catheter patency compromises IMP readings at least one minute after injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hargens AR, Mubarak SJ, Owen CA, Garetto LP, Akeson WH. Interstitial fluid pressure in muscle and compartment syndromes in man. Microvasc Res. 1977;14(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  2. Matsen F, Mayo KA, Sheridan GW, Krugmire R. Monitoring of intramuscular pressure. Surgery. 1976;79(6):702–9.

    PubMed  Google Scholar 

  3. Styf J, Korner L, Suurkula M. Intramuscular pressure and muscle blood flow during exercise in chronic compartment syndrome. J Bone Joint Surg Br. 1987;69(2):301–5.

    CAS  PubMed  Google Scholar 

  4. Hargens AR, Akeson WH, Mubarak SJ, Owen CA, Gershuni DH, Garfin SR, Lieber RL, Danzig LA, Botte MJ, Gelberman RH. Tissue fluid pressures: from basic research tools to clinical applications. J Orthop Res. 1989;7(6):902–9.

    Article  CAS  PubMed  Google Scholar 

  5. Starling E. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:303.

    Article  Google Scholar 

  6. Parazynski SE, Hargens AR, Tucker B, Aratow M, Styf J, Crenshaw A. Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity. J Appl Physiol. 1991;71(6):2469–75.

    CAS  PubMed  Google Scholar 

  7. Aukland K, Nicolaysen G. Interstitial fluid volume: local regulatory mechanisms. Physiol Rev. 1981;61(3):556–643.

    CAS  PubMed  Google Scholar 

  8. Whitesides TE Jr, Haney TC, Morimoto K, Harada H. Tissue pressure measurements as a determinant for the need of fasciotomy. Clin Orthop Relat Res. 1975;113:43–51.

    Article  PubMed  Google Scholar 

  9. Mubarak S, Hargens AR, Owen C, Garetto L, Akeson W. The wick catheter technique for measurement of intramuscular pressure: a new research and clinical tool. J Bone Joint Surg Am. 1976;58(7):1016.

    CAS  PubMed  Google Scholar 

  10. Scholander P, Hargens AR, Miiller SL. Negative pressure in the interstitial fluid of animals. Science. 1968;161(3839):321–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rorabeck C, Castle G, Hardie R, Logan J. Compartmental pressure measurements: an experimental investigation using the slit catheter. J Trauma. 1981;21(6):446.

    CAS  PubMed  Google Scholar 

  12. Styf J, Körner L. Microcapillary infusion technique for measurement of intramuscular pressure during exercise. Clin Orthop Relat Res. 1986;207:253.

    PubMed  Google Scholar 

  13. Awbrey BJ, Sienkiewicz PS, Mankin HJ. Chronic exercise-induced compartment pressure elevation measured with a miniaturized fluid pressure monitor a laboratory and clinical study. Am J Sports Med. 1988;16(6):610–5.

    Article  CAS  PubMed  Google Scholar 

  14. McDermott A, Marble A, Yabsley R, Phillips MB. Monitoring dynamic anterior compartment pressures during exercise a new technique using the STIC catheter. American J Sports Med. 1982;10(2):83–9.

    Article  CAS  Google Scholar 

  15. Crenshaw A, Styf J, Mubarak S, Hargens A. A new” transducer-tipped” fiber optic catheter for measuring intramuscular pressures. J Orthop Res. 1990;8(3):464.

    Article  CAS  PubMed  Google Scholar 

  16. Willy C, Gerngross H, Sterk J. Measurement of intracompartmental pressure with use of a new electronic transducer-tipped catheter system. J Bone Joint Surg. 1999;81(2):158–68.

    CAS  PubMed  Google Scholar 

  17. Sondergaard S, Karason S, Hanson A, Nilsson K, Hojer S, Lundin S, Stenqvist O. Direct measurement of intratracheal pressure in pediatric respiratory monitoring. Pediatr Res. 2002;51(3):339–45.

    Article  PubMed  Google Scholar 

  18. Woldbaek PR, Strømme TA, Sande JB, Christensen G, Tønnessen T, Ilebekk A. Evaluation of a new fiber-optic pressure recording system for cardiovascular measurements in mice. Am J Physiol Heart Circ Physiol. 2003;285(5):H2233–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ozerdem U. Measuring interstitial fluid pressure with fiberoptic pressure transducers. Microvasc Res. 2009;77(2):226–9.

    Article  PubMed  Google Scholar 

  20. Hebelka H, Gaulitz A, Nilsson A, Holm S, Hansson T. The transfer of disc pressure to adjacent discs in discography: a specificity problem? Spine. 2010;35(20):E1025.

    Article  PubMed  Google Scholar 

  21. Hebelka H, Nilsson A, Ekström L, Hansson T. In vivo discography in degenerate porcine spines revealed pressure transfer to adjacent discs. Spine. 2013;38(25):E1575–82.

    Article  PubMed  Google Scholar 

  22. Hebelka H, Nilsson A, Hansson T. Pressure increase in adjacent discs during clinical discography questions the methods validity. Spine. 2014;39(11):893–9.

    Article  Google Scholar 

  23. Uppal G, Smith R, Sherk H, Mooar P. Accurate compartment pressure measurement using the Intervenous Alarm Control (IVAC) Pump: report of a technique. J Orthop Trauma. 1991;6(1):87–9.

    Google Scholar 

  24. Boody AR, Wongworawat MD. Accuracy in the measurement of compartment pressures: a comparison of three commonly used devices. J Bone Joint Surg. 2005;87(11):2415–22.

    Article  PubMed  Google Scholar 

  25. Uliasz A, Ishida JT, Fleming JK, Yamamoto LG. Comparing the methods of measuring compartment pressures in acute compartment syndrome. Am J Emerg Med. 2003;21(2):143–5.

    Article  PubMed  Google Scholar 

  26. Gershuni D, Yaru N, Hargens A, Lieber R, O’Hara R, Akeson W. Ankle and knee position as a factor modifying intracompartmental pressure in the human leg. J Bone Joint Surg Am. 1984;66(9):1415–20.

    CAS  PubMed  Google Scholar 

  27. Weiner G, Styf J, Nakhostine M, Gershuni DH. Effect of ankle position and a plaster cast on intramuscular pressure in the human leg. J Bone joint surg Am. 1994;76(10):1476–81.

    CAS  PubMed  Google Scholar 

  28. Tsintzas D, Ghosh S, Maffulli N, King JB, Padhiar N. The effect of ankle position on intracompartmental pressures of the leg. Acta Orthop Traumatol Turc. 2004;43(1):42–8.

    Article  Google Scholar 

  29. Nakhostine M, Styf JR, van Leuven S, Hargens AR, Gershuni DH. Intramuscular pressure varies with depth: the tibialis anterior muscle studied in 12 volunteers. Acta Orthop. 1993;64(3):377–81.

    Article  CAS  Google Scholar 

  30. Styf J, Wiger P. Abnormally increased intramuscular pressure in human legs: comparison of two experimental models. J Trauma Acute Care Surg. 1998;45(1):133–9.

    Article  CAS  Google Scholar 

  31. Wiger P, Styf JR. Effects of limb elevation on abnormally increased intramuscular pressure, blood perfusion pressure, and foot sensation: an experimental study in humans. J Orthop Trauma. 1998;12(5):343–7.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Q, Styf J, Lindberg LG. Effects of limb elevation and increased intramuscular pressure on human tibialis anterior muscle blood flow. Eur J Appl Physiol. 2001;85(6):567–71.

    Article  CAS  PubMed  Google Scholar 

  33. Wiger P, Zhang Q, Styf J. The effects of limb elevation and increased intramuscular pressure on nerve and muscle function in the human leg. Eur J Appl Physiol. 2000;83(1):84–8.

    Article  CAS  PubMed  Google Scholar 

  34. Styf JR, Crenshaw A, Hargens AR. Intramuscular pressures during exercise comparison of measurements with and without infusion. Acta Orthop. 1989;60(5):593–6.

    Article  CAS  Google Scholar 

  35. Cottler PS, Karpen WR, Morrow DA, Kaufman KR. Performance characteristics of a new generation pressure microsensor for physiologic applications. Ann Biomed Eng. 2009;37(8):1638–45.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nilsson A, Zhang Q, Styf J. Using the amplitude of pulse-synchronous intramuscular pressure oscillations when diagnosing chronic anterior compartment syndrome. Orthop J Sports Med. 2014;2(11):2325967114556443.

    PubMed  PubMed Central  Google Scholar 

  37. Styf J. Evaluation of injection techniques in recording of intramuscular pressure. J Orthop Res. 1989;7(6):812–6.

    Article  CAS  PubMed  Google Scholar 

  38. Whitney A, O’Toole RV, Hui E, Sciadini MF, Pollak AN, Manson TT, Eglseder WA, Andersen RC, LeBrun C, Doro C. Do one-time intracompartmental pressure measurements have a high false-positive rate in diagnosing compartment syndrome? J Trauma Acute Care Surg. 2014;76(2):479–83.

    Article  PubMed  Google Scholar 

  39. McQueen MM, Duckworth AD, Aitken SA. The estimated sensitivity and specificity of compartment pressure monitoring for acute compartment syndrome. J Bone Joint Surg. 2013;95(8):673–7.

    Article  PubMed  Google Scholar 

  40. Collinge C, Kuper M. Comparison of three methods for measuring intracompartmental pressure in injured limbs of trauma patients. J Orthop Trauma. 2010;24(6):364–8.

    Article  PubMed  Google Scholar 

  41. Barnes M. Diagnosis and management of chronic compartment syndromes: a review of the literature. Br J Sports Med. 1997;31(1):21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mars M, Wfts M, Hadley G. Towards reducing the trauma of direct intracompartmental pressure measurement for children: an in vitro assessment of small-diameter needles. Pediatr Surg Int. 1997;12(2–3):172–6.

    Article  CAS  Google Scholar 

  43. Staudt J, Smeulders M, van der Horst C. Normal compartment pressures of the lower leg in children. J Bone Joint Surg Br. 2008;90(2):215.

    Article  CAS  PubMed  Google Scholar 

  44. Styf JR. Intramuscular pressure measurements during exercise. Oper Tech Sports Med. 1995;3(4):243–9.

    Article  Google Scholar 

Download references

Funding

Stryker AB, Sweden, supported us with the disposable kits for the Stryker unit and paid for the disposable Samba transducers. No other funding was received from Stryker AB. All funding was from internal sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Nilsson.

Ethics declarations

Conflict of interest

The authors have no affiliation with Stryker AB or Samba AB. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilsson, A., Zhang, Q. & Styf, J. Evaluation of a fiber-optic technique for recording intramuscular pressure in the human leg. J Clin Monit Comput 30, 699–705 (2016). https://doi.org/10.1007/s10877-015-9750-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9750-3

Keywords

Navigation