Skip to main content
Log in

A Study on the Influence of Metal Fe, Ag, and Mn Doping and (Fe/Mn and Ag/Mn) Dual-Doping on the Structural, Morphological, Optical, and Antibacterial Activity of CuS Nanostructures

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

CuS nanostructures with high surface areas were produced through a hydrothermal method using simple materials. These included pure CuS, as well as CuS doped with Fe, Ag, and Mn, as well as dual-doped with Fe/Mn and Ag/Mn. X-ray diffraction (XRD), field-emission scanning electron microscopes (FE-SEM), chemical composition (EDX) analysis, zeta potential, ultraviolet–visible (UV–vis) absorption spectra, and compositional chemicals (FTIR) have been used to characterize the produced nanoparticles. The XRD patterns indicate that the CuS is in hexagonal covellite polycrystalline phases with estimated crystalline sizes of 25.14–14.25 nm. The optical measurements showed that the band gaps ranged from 3.19 to 2.24 eV. The inhibitory effects of pristine CuS, as well as CuS doping with Fe, Ag, and Mn and dual-doping with (Fe/Mn, Ag/Mn), against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, were evaluated using the inhibition zone method. All samples exhibited robust antibacterial activity against all strains. The highest level of inhibition against all strains was observed with a concentration of 4 mg/ml of copper sulfide. Out of all the tested samples, (Ag/Mn) dual-doped copper sulfide showed the highest antibacterial activity against both negative-gram and positive-gram bacteria. Hence, (Ag/Mn) dual-doped copper sulfide might be applied as an antibacterial agent with antibiotics to kill and prevent resistance bacterial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pourmoslemi S, Seif F, Mahjub R (2021) Enhanced antibacterial activity of Ag-doped ZnS nanoparticles synthesised by a microwave-assisted polyol method. Mater Res Innov 25(7):399–403

    Article  CAS  Google Scholar 

  2. Du T et al (2020) Antibacterial activity of manganese dioxide nanosheets by ROS-mediated pathways and destroying membrane integrity. Nanomaterials 10(8):1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thukkaram M et al (2020) Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation. Appl Surf Sci 500:144235

    Article  CAS  Google Scholar 

  4. Subramanyam K, Sreelekha N, Reddy DA, Murali G, Varma KR, Vijayalakshmi RP (2017) Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles. Solid State Sci 65:68–78

    Article  CAS  Google Scholar 

  5. Ikram M et al (2022) Experimental and computational study of Zr and CNC-doped MnO2 nanorods for photocatalytic and antibacterial activity. ACS Omega 7(16):14045–14056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed KBA, Anbazhagan V (2017) Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish. RSC Adv 7(58):36644–36652

    Article  Google Scholar 

  7. Subramaniyan SB, Vijayakumar S, Megarajan S, Kamlekar RK, Anbazhagan V (2019) Remarkable effect of jacalin in diminishing the protein corona interference in the antibacterial activity of pectin-capped copper sulfide nanoparticles. ACS Omega 4(9):14049–14056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Jawad SMH, Taha AA, Redha AM, Imran NJ (2021) Influence of nickel doping concentration on the characteristics of nanostructure CuS prepared by hydrothermal method for antibacterial activity. Surf Rev Lett 28(01):2050031

    Article  Google Scholar 

  9. Podili S, Geetha D, Ramesh PS (2017) One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior. J Mater Sci Mater Electron 28(20):15387–15397

    Article  CAS  Google Scholar 

  10. Al-Jawad SMH, Mohammad MR, Imran NJ (2018) Effect of electrolyte solution on structural and optical properties of TiO2 grown by anodization technique for photoelectrocatalytic application. Surf Rev Lett 25(04):1850078

    Article  CAS  Google Scholar 

  11. Muhsen MM, Al-Jawad SMH, Taha AA (2022) NIR laser-conjugated glutathione-coated Mn-doped CuS nanoprisms as photothermal agent for cancer treatment. Lasers Med Sci 38(1):15

    Article  PubMed  Google Scholar 

  12. Al-Jawad SMH, Rafic SN, Muhsen MM (2017) Preparation and characterization of polyaniline–cadmium sulfide nanocomposite for gas sensor application. Mod Phys Lett B 31(26):1750234

    Article  CAS  Google Scholar 

  13. Taha AA, AL-Jawad SMH, AL-Barram LFA (2019) Improvement of cancer therapy by TAT peptide conjugated gold nanoparticles. J Clust Sci 30(2):403–414

    Article  CAS  Google Scholar 

  14. Zhang Y, Zhang B, Ge Z, Zhu L, Li Y (2014) Preparation by solvothermal synthesis, growth mechanism, and photocatalytic performance of CuS nanopowders. Eur J Inorg Chem 2014(14):2368–2375

    Article  CAS  Google Scholar 

  15. Roy P, Srivastava SK (2006) Hydrothermal growth of CuS nanowires from Cu− dithiooxamide, a novel single-source precursor. Cryst Growth Des 6(8):1921–1926

    Article  CAS  Google Scholar 

  16. Dhasade SS, Patil JS, Kim JH, Han SH, Rath MC, Fulari VJ (2012) Synthesis of CuS nanorods grown at room temperature by electrodeposition method. Mater Chem Phys 137(1):353–358

    Article  CAS  Google Scholar 

  17. Saranya M, Grace AN (2012) Hydrothermal synthesis of CuS nanostructures with different morphology. J Nano Res 18:43–51

    Article  Google Scholar 

  18. Zhang J, Zhang Z (2008) Hydrothermal synthesis and optical properties of CuS nanoplates. Mater Lett 62(15):2279–2281

    Article  CAS  Google Scholar 

  19. Ramamoorthy C, Rajendran V (2017) Synthesis and characterization of CuS nanostructures: structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process. Int J Hydrogen Energy 42(42):26454–26463

    Article  CAS  Google Scholar 

  20. Nafees M, Ali S, Rasheed K, Idrees S (2012) The novel and economical way to synthesize CuS nanomaterial of different morphologies by aqueous medium employing microwaves irradiation. Appl Nanosci 2(2):157–162

    Article  CAS  Google Scholar 

  21. Muhsen MM, Al-Jawad SMH, Taha AA (2022) Gum Arabic-modified Mn-doped CuS nanoprisms for cancer photothermal treatment. Chem Pap 1–18

  22. Shakir ZS, AL-Jawad SMH, Ahmed DS (2021) Influence of cobalt doping concentration on ZnO/MWCNTs hybrid prepared by sol-gel method for antibacterial activity. J Sol-Gel Sci Technol 100:115–131

    Article  CAS  Google Scholar 

  23. Freeda MA, Mahadevan CK (2013) Effect of Zn2+ dopping on CuS nanocrystals. Mater Sci Ind J 9(8):283–288

    CAS  Google Scholar 

  24. Al-Jawad SMH, Salman ON, Yousif NA (2018) Influence of titanium tetrachloride concentration and multiple growth cycles of TiO2 nanorod on photoanode performance in dye sensitized solar cell. Photonics Nanostruct Fundam Appl 31:81–88

    Article  Google Scholar 

  25. Elttayef HK, Ajeel HM, Kudair AE (2013) Preparation and study the structural and optical properties of CuS nano film. Int J Thin Film Sci Technol 2(3):8

    Google Scholar 

  26. Santos Cruz J, Mayén Hernández SA, Paraguay Delgado F, Zelaya Angel O, Castanedo Pérez R, Torres Delgado G (2013) Optical and electrical properties of thin films of CuS nanodisks ensembles annealed in a vacuum and their photocatalytic activity. Int J Photoenergy 2013

  27. He HY (2011) Thermal-assisted chemical bath deposition and optical property of CuS films. Optoelectron Adv Mater Commun 5(December 2011):1301–1306

    CAS  Google Scholar 

  28. Hussein ON, AL-Jawad SMH, Imran NJ (2023) Efficient antibacterial activity enhancement in Fe/Mn co-doped CuS nanoflowers and nanosponges. Bull Mater Sci 46(3):139

    Article  CAS  Google Scholar 

  29. Ajibade PA, Botha NL (2017) Synthesis, optical and structural properties of copper sulfide nanocrystals from single molecule precursors. Nanomaterials 7(2):32

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fathima AS, Sivaguru N, Kumar VS (2016) Investigation on optical properties of CuS and Zn doped CuS thin films by chemical bath deposition method. IOSR J App Phy 8:13–16

    Article  Google Scholar 

  31. Kundu J, Pradhan D (2013) Influence of precursor concentration, surfactant and temperature on the hydrothermal synthesis of CuS: structural, thermal and optical properties. New J Chem 37(5):1470–1478

    Article  CAS  Google Scholar 

  32. Brown JW, Ramesh PS, Geetha D (2018) Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors. Mater Res Express 5(2):24007

    Article  Google Scholar 

  33. Rouchdi M et al (2021) Physicochemical characterization and catalytic performance of Fe doped CuS thin films deposited by the chemical spray pyrolysis technique. Appl Phys A 127(6):1–14

    Article  Google Scholar 

  34. Li X et al (2022) Bifunctional iron doped CuS catalysts towards highly efficient overall water electrolysis in the alkaline electrolyte. Int J Hydrogen Energy 47(38):16719–16728

    Article  CAS  Google Scholar 

  35. Hussain S et al (2018) Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method. Phys Chem Chem Phys 20(8):5926–5935

    Article  PubMed  Google Scholar 

  36. Wang R, Shan G, Wang T, Yin D, Chen Y (2021) Photothermal enhanced photocatalytic activity based on Ag-doped CuS nanocomposites. J Alloys Compd 864:158591

    Article  CAS  Google Scholar 

  37. Kaur A, Singh K (2022) Investigation of crystalographic, morphological and photocatalytic behaviour of Ag doped CuS nanostructures. Mater Today Proc

  38. Zhou B et al (2018) Simultaneous multimodal imaging and photothermal therapy via renal-clearable manganese-doped copper sulfide nanodots. Appl Mater Today 13:285–297

    Article  Google Scholar 

  39. Gopi CVVM, Venkata-Haritha M, Kim S-K, Rao SS, Punnoose D, Kim H-J (2015) Highly efficient and stable quantum dot-sensitized solar cells based on a Mn-doped CuS counter electrode. RSC Adv 5(4):2963–2967

    Article  CAS  Google Scholar 

  40. Tailor JP, Chaki SH, Deshpande MP (2021) Comparative study between pure and manganese doped copper sulphide (CuS) nanoparticles. Nano Express 2(1):10011

    Article  Google Scholar 

  41. Zhang C et al (2023) Sensitive fluorescent detection and micromechanism of Mn-doped CuS probe for oxytetracycline hydrochloride. Spectrochim Acta Part A Mol Biomol Spectrosc 284:121768

    Article  CAS  Google Scholar 

  42. Riyaz S, Parveen A, Azam A (2016) Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspect Sci 8:632–635

    Article  Google Scholar 

  43. Imran M et al (2023) Polyvinylpyrrolidone and chitosan-coated magnetite (Fe3O4) nanoparticles for catalytic and antimicrobial activity with molecular docking analysis. J Environ Chem Eng 11(3):110088

    Article  Google Scholar 

  44. Ikram M et al (2022) Molybdenum and chitosan-doped MnO2 nanostructures used as dye degrader and antibacterial agent. Appl Nanosci 12(12):3909–3924

    Article  CAS  Google Scholar 

  45. Ikram M et al (2022) Chitosan/starch-doped MnO2 nanocomposite served as dye degradation, bacterial activity, and insilico molecular docking study. Mater Today Nano 20:100271

    Article  CAS  Google Scholar 

  46. Mehmood Z et al (2022) Z. officinale-doped silver/calcium oxide nanocomposites: catalytic activity and antimicrobial potential with molecular docking analysis. Process Biochem 121:635–646

    Article  CAS  Google Scholar 

  47. Jamal F et al (2022) Facile synthesis of silver and polyacrylic acid doped magnesium oxide nanostructure for photocatalytic dye degradation and bactericidal behavior. Appl Nanosci 12(8):2409–2419

    Article  CAS  Google Scholar 

  48. Saranya M, Santhosh C, Augustine SP, Grace AN (2014) Synthesis and characterisation of CuS nanomaterials using hydrothermal route. J Exp Nanosci 9(4):329–336

    Article  CAS  Google Scholar 

  49. Mirzaei A, Peymanfar R, Javanshir S, Fallahi R, Karimi J (2021) Antibacterial characteristics of CuS nanoplates anchored onto g-C3N4 nanosheets, suspended in PMMA matrix. Int J Nanosci Nanotechnol 17(4):249–260

    CAS  Google Scholar 

  50. Saranya M et al (2014) Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technol 252:25–32

    Article  CAS  Google Scholar 

  51. Sreelekha N, Subramanyam K, Reddy DA, Murali G, Varma KR, Vijayalakshmi RP (2016) Efficient photocatalytic degradation of rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation. Solid State Sci 62:71–81

    Article  CAS  Google Scholar 

  52. Stolyarchuk ID, Kleto GI, Dziedzic A (2017) Structural and optical properties of Co and Ni doped ZnO thin films prepared by RF magnetron sputtering. Phys Chem Solid State 18(3):302–308

    Article  Google Scholar 

  53. Taha AA, Al-Jawad SMH, Redha AM (2019) Preparation and characterization of nanostructure CuS for biological activity. Mod Phys Lett B 33(30):1950374

    Article  CAS  Google Scholar 

  54. Judran HK, Yousif NA, AL-Jawad SMH (2021) Preparation and characterization of CdS prepared by hydrothermal method. J Sol-Gel Sci Technol 97(1):48–62

    Article  CAS  Google Scholar 

  55. AL-Jawad SMH, Sabeeh SH, Taha AA, Jassim HA (2018) Studying structural, morphological and optical properties of nanocrystalline ZnO: Ag films prepared by sol–gel method for antimicrobial activity. J Sol-Gel Sci Technol 87(2):362–371

    Article  CAS  Google Scholar 

  56. Priyadharshini P, Rajagopal R (2015) Synthesis and characterization of metal doped nanocrystalline copper sulphide. Int J Recent Sci Res 6:3328–3331

    Google Scholar 

  57. Guermat N, Daranfed W, Bouchama I, Bouarissa N (2021) Investigation of structural, morphological, optical and electrical properties of Co/Ni co-doped ZnO thin films. J Mol Struct 1225:129134

    Article  CAS  Google Scholar 

  58. Irfan H, Racik KM, Anand S (2018) Microstructural evaluation of CoAl2O4 nanoparticles by Williamson-Hall and size–strain plot methods. J Asian Ceram Soc 6(1):54–62

    Article  Google Scholar 

  59. Ali T, Ahmed A, Alam U, Uddin I, Tripathi P, Muneer M (2018) Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater Chem Phys 212:325–335

    Article  CAS  Google Scholar 

  60. Ayodhya D, Venkatesham M, Santoshi Kumari A, Reddy GB, Ramakrishna D, Veerabhadram G (2016) Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles. J Exp Nanosci 11(6):418–432

    Article  CAS  Google Scholar 

  61. Salaken SM, Farzana E, Podder J (2013) Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis. J Semicond 34(7):73003

    Article  CAS  Google Scholar 

  62. AL-Jawad SMH, Imran NJ, Aboud KH (2021) Synthesis and characterization of Mn: CdS nanoflower thin films prepared by hydrothermal method for photocatalytic activity. J Sol-Gel Sci Technol 100(3):423–439

    Article  CAS  Google Scholar 

  63. Al-Jawad SMH, Elttayf AK, Saber AS (2017) Studying structural, optical, electrical, and sensing properties of nanocrystalline SnO2: Cu films prepared by sol–gel method for CO gas sensor application at low temperature. Surf Rev Lett 24(08):1750110

    Article  CAS  Google Scholar 

  64. Al-Jawad SMH, Sabeeh SH, Taha AA, Jassim HA (2019) Synthesis and characterization of Fe–ZnO thin films for antimicrobial activity. Surf Rev Lett 26(05):1850197

    Article  CAS  Google Scholar 

  65. AL-Jawad SMH, Taha AA, Redha AM (2019) Studying the structural, morphological, and optical properties of CuS: Ni nanostructure prepared by a hydrothermal method for biological activity. J Sol-Gel Sci Technol 91(2):310–323

    Article  CAS  Google Scholar 

  66. Mote VD, Purushotham Y, Dole BN (2013) Structural, morphological and optical properties of Mn doped ZnS nanocrystals. Cerâmica 59(352):614–619

    Article  CAS  Google Scholar 

  67. Reddy MR, Sugiyama M, Reddy KT (2013) Ni-doping effect on the structural and optical properties of sprayed ZnO thin films. Adv Mater Res 602:1423–1426

    Google Scholar 

  68. Heiba ZK, Mohamed MB (2018) Changes in structural, optical and magnetic properties of nano-CuS upon doping with Mn and Fe: a comparative study. Appl Phys A 124(6):1–11

    Article  Google Scholar 

  69. Zeinodin R, Jamali-Sheini F (2019) In-doped CuS nanostructures: ultrasonic synthesis, physical properties, and enhanced photocatalytic behavior. Phys B Condens Matter 570:148–156

    Article  CAS  Google Scholar 

  70. Sreelekha N et al (2016) Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles. Appl Surf Sci 378:330–340

    Article  CAS  Google Scholar 

  71. Kandasamy N, Saravanan S (2013) Synthesis and optical properties of vanadium doped covellite nanostructure by wet chemical method. In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, pp 52–54

  72. Chaki SH, Tailor JP, Deshpande MP (2014) Synthesis and characterizations of undoped and Mn doped CuS nanoparticles. Adv Sci Lett 20(5–6):959–965

    Article  Google Scholar 

  73. Ahmad N et al (2022) Facile low temperature synthesis of homogeneous CuS nanosheets: an effect of Ga loading on structural, optical, nonlinear and antimicrobial properties. Mater Chem Phys 277:125552

    Article  CAS  Google Scholar 

  74. Espinosa JC, Navalón S, Álvaro M, García H (2015) Silver nanoparticles supported on diamond nanoparticles as a highly efficient photocatalyst for the Fenton reaction under natural sunlight irradiation. ChemCatChem 7(17):2682–2688

    Article  CAS  Google Scholar 

  75. AL-Jawad SMH, Taha AA, Salim MM (2017) Synthesis and characterization of pure and Fe doped TiO2 thin films for antimicrobial activity. Optik (Stuttg) 142:42–53

    Article  CAS  Google Scholar 

  76. Moongraksathum B, Chien M-Y, Chen Y-W (2019) Antiviral and antibacterial effects of silver-doped TiO2 prepared by the peroxo sol-gel method. J Nanosci Nanotechnol 19(11):7356–7362

    Article  CAS  PubMed  Google Scholar 

  77. Khan MM, Harunsani MH, Tan AL, Hojamberdiev M, Azamay S, Ahmad N (2020) Antibacterial activities of zinc oxide and Mn-doped zinc oxide synthesized using Melastoma malabathricum (L.) leaf extract. Bioprocess Biosyst Eng 43(8):1499–1508

    Article  CAS  PubMed  Google Scholar 

  78. Ravichandran K et al (2015) Improving the antibacterial efficiency of ZnO nanopowders through simultaneous anionic (F) and cationic (Ag) doping. Powder Technol 274:250–257

    Article  CAS  Google Scholar 

  79. Malarkodi C, Rajeshkumar S (2017) In vitro bactericidal activity of biosynthesized CuS nanoparticles against UTI-causing pathogens. Inorg Nano-Metal Chem 47(9):1290–1297

    Article  CAS  Google Scholar 

  80. Ghaedi M et al (2016) Synthesis of CuS nanoparticles and evaluation of its antimicrobial properties in combination with Linum usitatissimum root and shoot extract. Desalin Water Treat 57(51):24456–24466

    Article  CAS  Google Scholar 

  81. Ayodhya D, Veerabhadram G (2017) Preparation, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CuS NPs by a green approach. J Inorg Organomet Polym Mater 27(1):215–230

    Article  CAS  Google Scholar 

  82. Wang G, Fakhri A (2020) Preparation of CuS/polyvinyl alcohol-chitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G-bacteria. Int J Biol Macromol 155:36–41

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ola N. Hussein contributed to investigation, writing—original draft, methodology, and formal analysis. Selma M. H. AL-Jawad contributed to writing—review and editing, administration, formal analysis, and investigation. Natheer Jamal Imran contributed to writing formal analysis, and investigation.

Corresponding author

Correspondence to Selma M. H. AL-Jawad.

Ethics declarations

Conflict of Interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A production method that was both inexpensive and uncomplicated was employed to create highly efficient samples of CuS, both in its pure form and when doped with Fe, Ag, Mn, or dual-doped with Fe/Mn and Ag/Mn.

• In this work, for the first time, the influence of Fe, Ag, Mn-doped, and (Fe/Mn and Ag/Mn) dual-doped on the structural, morphological, optical, and antibacterial properties of CuS nanostructure has been examined.

• The inhibitory zone method was used to analyze the antibacterial effect of CuS against P. aeruginosa, S. aureus, and E. coli. The test demonstrated that it is strong and enhanced antibacterial activity with (Ag/Mn) dual-doping.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, O.N., AL-Jawad, S.M.H. & Imran, N.J. A Study on the Influence of Metal Fe, Ag, and Mn Doping and (Fe/Mn and Ag/Mn) Dual-Doping on the Structural, Morphological, Optical, and Antibacterial Activity of CuS Nanostructures. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02027-0

Keywords

Navigation