Skip to main content
Log in

Synthesis and Characterization of Novel Chitosan/Graphene Oxide/Poly (Vinyl Alcohol) Aerogel Nanocomposite for High Efficiency Uranium (VI) Removal from Wastewaters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The toxic and the hazardous ramifications that affect both the environment and human beings due to the existence of uranium in wastewater are a huge challenge towards a sustainable environment. Uranium removal from wastewater is a big difficulty that is becoming more severe as the world’s population grows and energy demand rises. A hydrothermal and freeze-drying process is used to create a chitosan/graphene oxide/poly (vinyl alcohol) aerogel (CH/GO/PVA) for a very effective and selective uranium removal. Batch experiments were used to examine hexavalent uranium (VI) sorption from wastewater. The efficiency of U (VI) removal was investigated for time of contact, various pH, dosage of sorbent, initial concentration of U (VI), and temperature values. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Energy Dispersive Spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller are utilized to describe the composition, morphology, polymer formation and nanocomposites. Kinetic and Freundlich equations, and the pseudo-second-order are used to illustrate the adsorption process. The adsorption capacity of U (VI) reaches its maximum of 1247 mg g–1 when an initial uranium concentration is 380 mg L–1, and the highest uranium removal efficiency is 98.44%. Thermodynamic study reveals an endothermic and spontaneous adsorption mechanism. Furthermore, the as-synthesized GO/CS/PVA aerogel has good mechanical as well as thermal stability, and can be utilized six times before losing a substantial portion of its original removing effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets of the current study are available from the corresponding author on reasonable request.

References

  1. W. Yao, X. Wang, Y. Liang, S. Yu, P. Gu, Y. Sun, et al. (2018). Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U (VI) and 241Am (III) efficient removal: Batch and EXAFS studies. Chem. Eng. J. 332, 775–786. https://doi.org/10.1016/j.cej.2017.09.011.

    Article  CAS  Google Scholar 

  2. Y. Sun and Y. Li (2021). Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review. Environ. Pollut. 278, 116861. https://doi.org/10.1016/j.envpol.2021.116861.

    Article  CAS  PubMed  Google Scholar 

  3. M. Li, H. Liu, T. Chen, C. Dong, and Y. Sun (2019). Synthesis of magnetic biochar composites for enhanced uranium (VI) adsorption. Sci. Total Environ. 651, 1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. X. Nie, X. Hu, C. Liu, X. Xia, and F. Dong (2021). Decontamination of uranium contained low-level radioactive wastewater from UO2 fuel element industry with vacuum membrane distillation. Desalination 516, 115226. https://doi.org/10.1016/j.desal.2021.115226.

    Article  CAS  Google Scholar 

  5. G. Bayramoglu, A. Akbulut, I. Acıkgoz-Erkaya, and M. Y. Arica (2018). Uranium sorption by native and nitrilotriacetate-modified Bangia atropurpurea biomass: kinetics and thermodynamics. J. Appl. Phycol. 30, 649–661. https://doi.org/10.1007/s10811-017-1238-8.

    Article  CAS  Google Scholar 

  6. R. I. Foster, J. T. Amphlett, K.-W. Kim, T. Kerry, K. Lee, and C. A. Sharrad (2020). SOHIO process legacy waste treatment: uranium recovery using ion exchange. J. Ind. Eng. Chem. 81, 144–152. https://doi.org/10.1016/j.jiec.2019.09.001.

    Article  CAS  Google Scholar 

  7. J. Liao, P. Liu, Y. Xie, and Y. Zhang (2021). Metal oxide aerogels: Preparation and application for the uranium removal from aqueous solution. Sci. Total Environ. 768, 144212. https://doi.org/10.1016/j.scitotenv.2020.144212.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. S. Li, X. Yang, Z. Cui, Y. Xu, Z. Niu, P. Li, et al. (2021). Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites. Appl. Catal. B: Environ. 298, 120625. https://doi.org/10.1016/j.apcatb.2021.120625.

    Article  CAS  Google Scholar 

  9. L. Kong, Y. Ruan, Q. Zheng, M. Su, Z. Diao, D. Chen, et al. (2020). Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J. Hazard. Mater. 382, 120784. https://doi.org/10.1016/j.jhazmat.2019.120784.

    Article  CAS  PubMed  Google Scholar 

  10. R. M. Al-Maliki, Q. F. Alsalhy, S. Al-Jubouri, I. K. Salih, A. A. AbdulRazak, M. A. Shehab, et al. (2022). Classification of nanomaterials and the effect of graphene oxide (GO) and recently developed nanoparticles on the ultrafiltration membrane and their applications: a review. Membranes 12 (11), 1043. https://doi.org/10.3390/membranes12111043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. F. Farivar, P. L. Yap, R. U. Karunagaran, and D. Losic (2021). Thermogravimetric analysis (TGA) of graphene materials: effect of particle size of graphene, graphene oxide and graphite on thermal parameters. C 7 (2), 41. https://doi.org/10.3390/c7020041.

    Article  CAS  Google Scholar 

  12. W. Yu, L. Sisi, Y. Haiyan, and L. Jie (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 10 (26), 15328–15345. https://doi.org/10.1039/d0ra01068e.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. I. Aranaz, A. R. Alcántara, M. C. Civera, C. Arias, B. Elorza, A. Heras Caballero, and N. Acosta (2021). Chitosan: an overview of its properties and applications. Polymers 13 (19), 3256. https://doi.org/10.3390/polym13193256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. O. Silva, R. S. Cunha, D. Hotza, and R. A. F. Machado (2021). Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydr. Polym. 272, 118472. https://doi.org/10.1016/j.carbpol.2021.118472.

    Article  CAS  PubMed  Google Scholar 

  15. A. M. Omer, R. Dey, A. S. Eltaweil, E. M. Abd El-Monaem, and Z. M. Ziora (2022). Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. Arab. J. Chem. 15 (2), 103543. https://doi.org/10.1016/j.arabjc.2021.103543.

    Article  CAS  Google Scholar 

  16. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, and R. S. Varma (2021). Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 251, 116986. https://doi.org/10.1016/j.carbpol.2020.116986.

    Article  CAS  PubMed  Google Scholar 

  17. D. Feldman (2020). Poly (vinyl alcohol) recent contributions to engineering and medicine. J. Compos. Sci. 4 (4), 175. https://doi.org/10.3390/jcs4040175.

    Article  CAS  Google Scholar 

  18. Y. He, H. Tian, A. Xiang, H. Wang, J. Li, X. Luo, and A. V. Rajulu (2021). Fabrication of PVA nanofibers grafted with octaamino-POSS and their application in heavy metal adsorption. J. Polym. Environ. 29, 1566–1575. https://doi.org/10.1007/s10924-020-01865-x.

    Article  CAS  Google Scholar 

  19. M. Wang, J. Bai, K. Shao, W. Tang, X. Zhao, D. Lin, et al. (2021). Poly (vinyl alcohol) hydrogels: The old and new functional materials. Int. J. Polym. Sci. 2021, 1–16. https://doi.org/10.1155/2021/2225426.

    Article  CAS  Google Scholar 

  20. C. I. Idumah (2021). Novel trends in polymer aerogel nanocomposites. Polym—Plastics Technol. Mater. 60 (14), 1519–1531. https://doi.org/10.1080/25740881.2021.1912092.

    Article  CAS  Google Scholar 

  21. Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang, T. Wang, et al. (2021). Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13 (1), 144. https://doi.org/10.1007/s40820-021-00667-7.

    Article  ADS  CAS  Google Scholar 

  22. Y. Qin, C. Xue, H. Yu, Y. Wen, L. Zhang, and Y. Li (2021). The construction of bio-inspired hierarchically porous graphene aerogel for efficiently organic pollutants absorption. J. Hazard. Mater. 419, 126441. https://doi.org/10.1016/j.jhazmat.2021.126441.

    Article  CAS  PubMed  Google Scholar 

  23. T. T. P. N. X. Trinh, T. H. Quan, T. N. M. Anh, D. B. Thinh, N. T. Lan, D. N. Trinh, et al. (2021). Preparing three-dimensional graphene aerogels by chemical reducing method: Investigation of synthesis condition and optimization of adsorption capacity of organic dye. Surfaces Interfaces 23, 101023. https://doi.org/10.1016/j.surfin.2021.101023.

    Article  CAS  Google Scholar 

  24. D. Zhi, T. Li, J. Li, H. Ren, and F. Meng (2021). A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B: Eng. 211, 108642. https://doi.org/10.1016/j.compositesb.2021.108642.

    Article  CAS  Google Scholar 

  25. N. Zaaba, K. Foo, U. Hashim, S. Tan, W.-W. Liu, and C. Voon (2017). Synthesis of graphene oxide using modified hummers method: Solvent influence. Procedia Eng 184, 469–477. https://doi.org/10.1016/j.proeng.2017.04.118.

    Article  CAS  Google Scholar 

  26. M. C. Costa, V. S. Marangoni, P. R. Ng, H. T. Nguyen, A. Carvalho, and A. H. Castro Neto (2021). Accelerated synthesis of graphene oxide from graphene. Nanomaterials 11 (2), 551. https://doi.org/10.3390/nano11020551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. E. H. Sujiono, D. Zabrian, M. Dahlan, B. Amin, and J. Agus (2020). Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization. Heliyon 6 (8), e04568. https://doi.org/10.1016/j.heliyon.2020.e04568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. A. Kahdestani, M. H. Shahriari, and M. Abdouss (2021). Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol–gel. Polym. Bull. 78, 1133–1148. https://doi.org/10.1007/s00289-020-03134-2.

    Article  CAS  Google Scholar 

  29. K. Kaur, R. Jindal, and D. Saini (2020). Synthesis, optimization and characterization of PVA-co-poly (methacrylic acid) green adsorbents and applications in environmental remediation. Polym. Bull. 77, 3079–3100. https://doi.org/10.1007/s00289-019-02900-1.

    Article  CAS  Google Scholar 

  30. W. Sun, H. Ou, and Z. Chen (2022). Study on preparation of chitosan/polyvinyl alcohol aerogel with graphene—intercalated attapulgite (GO−ATP@ CS−PVA) and adsorption properties of crystal violet dye. Nanomaterials 12 (22), 3931. https://doi.org/10.3390/nano12223931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. W. Ahmed, A. Núñez-Delgado, S. Mehmood, S. Ali, M. Qaswar, A. Shakoor, and D.-Y. Chen (2021). Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: adsorption behavior and mechanism. Environ. Res. 201, 111518. https://doi.org/10.1016/j.envres.2021.111518.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Li, A. O. Simon, C. Jiao, M. Zhang, W. Yan, H. Rao, et al. (2020). Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Micropor. Mesopor. Mater. 302, 110244. https://doi.org/10.1016/j.micromeso.2020.110244.

    Article  CAS  Google Scholar 

  33. S. Zhou, F. Dong, and Y. Qin (2023). High efficiency uranium (VI) removal from wastewater by strong alkaline ion exchange fiber: Effect and characteristic. Polymers 15 (2), 279. https://doi.org/10.3390/polym15020279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Liu, Y. Chen, H. Zhao, and C. Teng (2021). Characterization, dielectric properties, and mechanical properties of cyanate epoxy composites modified by KH550-ALOOH@ GO. J. Mater. Sci.: Mater. Electron. 32, 8890–8902. https://doi.org/10.1007/s10854-021-05561-x.

    Article  CAS  Google Scholar 

  35. M. S. K. Sofla, S. Mortazavi, and J. Seyfi (2020). Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr. Polym. 232, 115784. https://doi.org/10.1016/j.carbpol.2019.115784.

    Article  CAS  Google Scholar 

  36. A. V. Maffei, P. M. Budd, and N. B. McKeown (2006). Adsorption studies of a microporous phthalocyanine network polymer. Langmuir 22 (9), 4225–4229. https://doi.org/10.1021/la060091z.

    Article  CAS  PubMed  Google Scholar 

  37. Z. Wang, D. Zhao, C. Wu, S. Chen, Y. Wang, and C. Chen (2020). Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution. Appl. Radiat. Isotopes 162, 109160. https://doi.org/10.1016/j.apradiso.2020.109160.

    Article  CAS  Google Scholar 

  38. X. Liu, J. Sun, X. Xu, A. Alsaedi, T. Hayat, and J. Li (2019). Adsorption and desorption of U (VI) on different-size graphene oxide. Chem. Eng. J. 360, 941–950. https://doi.org/10.1016/j.cej.2018.04.050.

    Article  CAS  Google Scholar 

  39. M. A. Al-Ghouti and D. A. Da’ana (2020). Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by the College of Science, Department of Chemistry, Ilam University and the Central Laboratories Directorate, Iraqi Atomic Energy Commission.

Author information

Authors and Affiliations

Authors

Contributions

MDM: Resources, investigation, methodology, validation, funding acquisition roles/writing—original draft. MR: Supervision, conceptualization, corresponding author, methodology, validation, funding acquisition, writing—review &editing.

Corresponding author

Correspondence to Mahmoud Roushani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, M.D., Roushani, M. Synthesis and Characterization of Novel Chitosan/Graphene Oxide/Poly (Vinyl Alcohol) Aerogel Nanocomposite for High Efficiency Uranium (VI) Removal from Wastewaters. J Clust Sci 35, 903–914 (2024). https://doi.org/10.1007/s10876-023-02523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02523-7

Keywords

Navigation