Skip to main content
Log in

Photocatalytic Degradation of Methylene Blue Dye Using Copper Selenide Nanoparticles Prepared by Co- Precipitation Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The industrial dye pollutants directly affect the aquatic animals and humans. Among these methylene blue (MB) dye is highly toxic, non-degradable, carcinogenic and responsible for major health issues for humans and hazardous to the environment. In present work, we were mainly put efforts for the low-cost synthesis of Cu1.8Se nanoparticles (NPs), annealed as-synthesized sample at 200 ͦ C and then utilized it for photodegradation of toxic MB dye. The structural, morphological and optical properties were studied by X-ray diffraction, TEM, SEM, EDX, UV-Visible, FTIR spectroscopy techniques. Cu1.8Se NPs crystallized in cubic structural phase with crystallites size around 20 nm. The TEM micrographs confirmed the formation of random shaped and sized particles of size ranges from 15 nm 50 nm. SEM and EDAX results showed the presence of copper (Cu) and selenium (Se) elements. The direct band gaps of sample A (as-prepared) and sample B (annealed) were found to be 2.0 and 2.1 eV, respectively. FTIR spectra showed the bands of Cu-Se bending and stretching vibrations. The photocatalytic activities against MB dye shows that Cu1.8Se NPs could serve as a potential catalyst for breaking down of MB Dye and degrade in the presence of incandescent bulb light Hence, Cu1.8Se NPs is self sufficient for the removal of dissolved toxic contaminations from the industrial waste water as well as other polluted water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All research related data are included in this article and available here.

References

  1. J. Zhong, Z. Xia, M. Luo, J. Zhao, J. Chen, L. Wang, X. Liu, D.-J. Xue, Y.-B. Cheng, H. Song and J. Tang, Sci. Rep., 2014, 4, 6288. https://doi.org/10.1038/srep06288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Nouri, R. Yousefi, N. Zare-Dehnavi and F. Jamali-Sheini, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124196. https://doi.org/10.1016/j.colsurfa.2019.124196

    Article  CAS  Google Scholar 

  3. J. S. Kim, S. K. Baek, Y. B. Kim, H. W. Do, Y. H. Kwon, S. W. Cho, Y. D. Yun, J. H. Yoon, H.-B.-R. Lee, S.-W. Kim and H. K. Cho, Nano Energy, 2018, 46, 1–10. https://doi.org/10.1016/j.nanoen.2018.01.023

    Article  CAS  Google Scholar 

  4. Z. Gu, Y. Fan, Y. Ye, Y. Cai, J. Liu, S. Wu, P. Li, J. Hu, C. Liang and Y. Ma, Chinese Phys. B, 2022, 31, 078102. https://doi.org/10.1088/1674-1056/ac6db2

    Article  Google Scholar 

  5. N. Karthikeyan, T. Sivaranjani, S. Dhanavel, V. K. Gupta, V. Narayanan and A. Stephen, J. Mol. Liq., 2017, 227, 194–201. https://doi.org/10.1016/j.molliq.2016.12.019

    Article  CAS  Google Scholar 

  6. S. Thokala and S. P. Singh, ACS Omega, 2020, 5, 5608–5619. https://doi.org/10.1021/acsomega.0c00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. K. Debanath and S. Karmakar, Mater. Lett., 2013, 111, 116–119. https://doi.org/10.1016/j.matlet.2013.08.069

    Article  CAS  Google Scholar 

  8. M. A. Shafi, A. Bouich, K. Fradi, J. M. Guaita, L. Khan and B. Mari, Optik (Stuttg), 2022, 258, 168854. https://doi.org/10.1016/j.ijleo.2022.168854

    Article  CAS  Google Scholar 

  9. F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano and M. Saggio, Microelectron. Eng., 2018, 187–188, 66–77. https://doi.org/10.1016/j.mee.2017.11.021

  10. S. C. Riha, D. C. Johnson and A. L. Prieto, J. Am. Chem. Soc., 2011, 133, 1383–1390. https://doi.org/10.1021/ja106254h

    Article  CAS  PubMed  Google Scholar 

  11. V. M. García, P. K. Nair and M. T. S. Nair, J. Cryst. Growth, 1999, 203, 113–124. https://doi.org/10.1016/S0022-0248(99)00040-8

    Article  Google Scholar 

  12. L. Mi, W. Wei, Z. Zheng, G. Zhu, H. Hou, W. Chen and X. Guan, Nanoscale, 2014, 6, 1124–1133. https://doi.org/10.1039/C3NR04923J

    Article  CAS  PubMed  Google Scholar 

  13. Q. Wang, Y. Zhao, Z. Zhang, S. Liao, Y. Deng, X. Wang, Q. Ye and K. Wang, Ceramics International, 2023, 49, 5977–5985. https://doi.org/10.3390/w15071380

    Article  CAS  Google Scholar 

  14. P. P. J. Helan, K. Mohanraj and G. Sivakumar, Appl. Phys. A, 2016, 122, 718. https://doi.org/10.1007/s00339-016-0249-7

    Article  CAS  Google Scholar 

  15. R. Mirzanezhad-Asl, A. Phirouznia, Ş. Altındal, Y. Badali and Y. Azizian-Kalandaragh, Physica B: Condensed Matter, 2019, 561, 1–8. https://doi.org/10.1016/j.physb.2019.02.046

    Article  CAS  Google Scholar 

  16. Y. Mi, X. Peng, X. Liu and J. Luo, ACS Appl. Energy Mater.,, https://doi.org/10.1021/acsaem.8b00744

  17. L.-N. Qiao, H.-C. Wang, Y.-D. Luo, H.-M. Xu, J.-P. Ding, S. Lan, Y. Shen, Y.-H. Lin and C.-W. Nan, J. Am. Ceram. Soc., 2018, 101, 3015–3025. https://doi.org/10.1111/jace.15433

    Article  CAS  Google Scholar 

  18. L.-N. Qiao, H.-C. Wang, Y. Shen, Y.-H. Lin and C.-W. Nan, Nanomaterials (Basel),, https://doi.org/10.3390/nano7010019

  19. P. Kumar and K. Singh, Struct. Chem., 2011, 22, 103–110. https://doi.org/10.1007/s11224-010-9698-3

    Article  CAS  Google Scholar 

  20. S. Vikulov, F. Di Stasio, L. Ceseracciu, P. L. Saldanha, A. Scarpellini, Z. Dang, R. Krahne, L. Manna and V. Lesnyak, Adv. Funct. Mater., 2016, 26, 3670–3677. https://doi.org/10.1002/adfm.201600124

    Article  CAS  Google Scholar 

  21. P. Patel, P. Gupta, K. M. Sujata and R. Garg Solanki, Materials Today: Proceedings,, https://doi.org/10.1016/j.matpr.2022.12.220

  22. Y. Zhang, Z.-P. Qiao and X.-M. Chen, J. Mater. Chem, 2002, 12, 2747–2748. https://doi.org/10.1039/b205558a

    Article  CAS  Google Scholar 

  23. S. Mourdikoudis, G. Antonaropoulos, N. Antonatos, M. Rosado, L. Storozhuk, M. Takahashi, S. Maenosono, J. Luxa, Z. Sofer, B. Ballesteros, N. T. K. Thanh and A. Lappas, Nanomaterials (Basel),, https://doi.org/10.3390/nano11123369

  24. S.-Y. Zhang, C.-X. Fang, Y.-P. Tian, K.-R. Zhu, B.-K. Jin, Y.-H. Shen and J.-X. Yang, Cryst. Growth Des., 2006, 6, 2809–2813. https://doi.org/10.1021/cg0604430

    Article  CAS  Google Scholar 

  25. L. N. Qiao, M. R. Tang, Y. Y. Gang, H. M. Xu and Y. H. Lin, SSP, 2018, 281, 825–829. https://www.scientific.net/SSP.281.825

  26. A. Bouich, J. Marí-Guaita, F. Baig, Y. Hameed Khattak, B. M. Soucase and P. Palacios, Nanomaterials (Basel),, https://doi.org/10.3390/nano12173027

  27. R. D. Heyding and R. M. Murray, Can. J. Chem., 1976, 54, 841–848. https://doi.org/10.1139/v76-122

    Article  CAS  Google Scholar 

  28. M. Gilić, M. Petrović, R. Kostić, D. Stojanović, T. Barudžija, M. Mitrić, N. Romčević, U. Ralević, J. Trajić, M. Romčević and I. S. Yahia, Infrared Phys. Technol., 2016, 76, 276–284. https://doi.org/10.1016/j.infrared.2016.03.008

    Article  CAS  Google Scholar 

  29. I. Khan, K. Saeed, I. Zekker, B. Zhang, A. H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L. A. Shah, T. Shah and I. Khan, Water (Basel), 2022, 14, 242. https://doi.org/10.3390/w14020242

    Article  CAS  Google Scholar 

  30. S. R. Gosavi, N. G. Deshpande, Y. G. Gudage and R. Sharma, J Alloys Compd, 2008, 448, 344–348. https://doi.org/10.1016/j.jallcom.2007.03.068

    Article  CAS  Google Scholar 

  31. M. Nouri, N. Zare-Dehnavi, F. Jamali-Sheini and R. Yousefi, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124656. https://doi.org/10.1016/j.colsurfa.2020.124656

    Article  CAS  Google Scholar 

  32. X. Li, W. Lv, G. Wu, G. Fu, W. Zhang and Z. Li, Chemical Engineering Journal, 2021, 426, 131899. https://doi.org/10.1016/j.cej.2021.131899

    Article  CAS  Google Scholar 

  33. B. Hamawandi, S. Ballikaya, M. Råsander, J. Halim, L. Vinciguerra, J. Rosen, M. Johnsson and M. Toprak, Nanomaterials (Basel),, https://doi.org/10.3390/nano10050854

  34. O. Belukhina, D. Milasiene and R. Ivanauskas, Materials (Basel),, https://doi.org/10.3390/ma14071648

  35. H. Okimura, T. Matsumae and R. Makabe, Thin Solid Films, 1980, 71, 53–59. https://doi.org/10.1016/0040-6090(80)90183-2

    Article  CAS  Google Scholar 

  36. H. M. Choi, I. A. Ji and J. H. Bang, ACS Appl. Mater. Interfaces, 2014, 6, 2335–2343. https://doi.org/10.1021/am404355m

    Article  CAS  PubMed  Google Scholar 

  37. M. Ikram, A. Haider, M. Imran, J. Haider, S. Naz, A. Ul-Hamid, A. Shahzadi, S. Moeen, G. Nazir, W. Nabgan, A. Bashir and S. Ali, Surfaces and Interfaces, 2023, 37, 102710. https://doi.org/10.1016/j.surfin.2023.102710

    Article  CAS  Google Scholar 

  38. Green Chem, 2019, 21, 4242–4242. https://doi.org/10.1038/s41929-022-00842-y

  39. X. Xu, T. Huang, Y. Xu, H. Hu, S. Liao, X. Hu, D. Chen and M. Zhang, Journal of Rare Earths, 2022, 40, 1255–1263.

    Article  CAS  Google Scholar 

  40. A. J. Martín, S. Mitchell, C. Mondelli, S. Jaydev and J. Pérez-Ramírez, Nat. Catal., 2022, 5, 854–866. https://linkinghub.elsevier.com/retrieve/pii/S1002072121001988. https://www.nature.com/articles/s41929-022-00842-y

    Article  Google Scholar 

  41. R. G. Solanki, P. Rajaram and P. K. Bajpai, Indian J. Phys., 2018, 92, 595–603. https://doi.org/10.1007/s12648-017-1134-8

    Article  CAS  Google Scholar 

  42. M. Z. Mohyedin, M. F. M. Taib, N. A. Malik, N. N. Alam, M. Mustaffa, A. M. M. Ali, O. H. Hassan, B. U. Haq and M. Z. A. Yahya, Computational Condensed Matter, 2022, 30, e00618. https://doi.org/10.1016/j.cocom.2021.e00618

    Article  Google Scholar 

  43. R. G. Solanki and P. Rajaram, in ADVANCES IN BASIC SCIENCE (ICABS 2019), AIP Publishing, 2019, vol. 2142, p. 040017.

    Google Scholar 

  44. N. H. Osman, N. N. Mazu, J. Ying Chyi Liew, M. M. Ramli, A. V. Sandu, M. Nabiałek, M. A. H. M. Abdull Majid and H. I. Mazlan, Magnetochemistry, 2021, 7, 102. https://doi.org/10.3390/magnetochemistry7070102

    Article  CAS  Google Scholar 

  45. S. Moeen, M. Ikram, A. Haider, J. Haider, A. Ul-Hamid, W. Nabgan, T. Shujah, M. Naz and I. Shahzadi, ACS Omega, 2022, 7, 46428–46439. https://doi.org/10.1021/acsomega.2c07753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. A. Shahzadi, S. Moeen, A. D. Khan, A. Haider, J. Haider, A. Ul-Hamid, W. Nabgan, I. Shahzadi, M. Ikram and A. Al-Shanini, ACS Omega, 2023, 8, 8605–8616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. P. Patel, R. G. Solanki, P. Gupta, KM Sujata and B. Balachandran, MRS Adv.,, https://doi.org/10.1557/s43580-023-00547-9

Download references

Acknowledgements

The authors are grateful to the Centre for Advanced Research (CAR) facility of Dr. Hari Singh Gour University, Sagar (M.P.) for XRD spectra and TEM/HRTEM images. Authors show their gratitude to the Department of Chemistry and Department of biotechnology, Dr. Hari Singh Gour University, Sagar (M.P.) for FTIR and UV-Visible Spectroscopy.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ms. Pushpanjali Patel: Experiments performed, characterization, analysis and interpretation of results, writing-original draft, Ms. Prerna Gupta: Support in formal analysis. Ms. KM Sujata: Support in formal analysis, Dr. Rekha Garg Solanki: Supervision, conceptualization, analysis and interpretation of results, edited original draft and finalize the manuscript.

Corresponding author

Correspondence to Rekha Garg Solanki.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Gupta, P., Sujata, K. et al. Photocatalytic Degradation of Methylene Blue Dye Using Copper Selenide Nanoparticles Prepared by Co- Precipitation Method. J Clust Sci 35, 191–199 (2024). https://doi.org/10.1007/s10876-023-02473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02473-0

Keywords

Navigation