Skip to main content
Log in

Solution Processed WO3 and PEDOT:PSS Composite for Hole Transport Layer in ITO-Free Organic Solar Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We developed PEDOT:PSS [poly (styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene] and tungsten oxide (WO3) based hybrid thin films by facile hydrothermal method. The solution processed WO3–PEDOT:PSS hybrid thin films are fully characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV–Vis (UV), Raman, X-ray photoelectron spectra (XPS) and Brunauer–Emmett–Teller (BET) surface area analysis. XRD and SEM results suggest that WO3 has crystalline structure with monoclinic phase and spherical shaped nanoparticles (20–25 nm), which is uniformly decorated on the surface of PEDOT:PSS sheets. The value of Eg [calculated by linear extrapolating of (F(R ∞) hν)2 and hν] was evaluated to be 3.11 and 2.85 eV for pure WO3 and WO3/PEDOT:PSS, respectively. The PL intensity of WO3/PEDOT:PSS is maximum lower than the pristine WO3 and PEDOT:PSS, implying an improved interfacial contact quality at the WO3/PEDOT:PSS. Photovoltaic performance of WO3–PEDOT:PSS devices were measured under AM 1.5 G 1 sun light intensity of 100 mW/cm2. Organic solar cell devices with WO3–PEDOT:PSS layer give rise to a significant increase in JSC from 9.35 ± 0.03 to 16.2 ± 0.01 mA/cm2 respectively and in VOC from 0.28 V to 0.72 V respectively, resulting in a remarkable PCE increase from 0.592 ± 0.03 to 0.714 ± 0.02%. The WO3/PEDOT:PSS composite deliver a PCE of 7.81 ± 0.01%. The superior performance of WO3/PEDOT:PSS composite was attributed to the reduced current leakage, enhanced hole extraction characteristics, and less trap-assisted interfacial recombination via current density–voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl (1992). Science 258, 1474.

    Article  CAS  PubMed  Google Scholar 

  2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger (1995). Science 270, 1789.

    Article  CAS  Google Scholar 

  3. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen (2001). Adv. Funct. Mater. 11, 15.

    Article  CAS  Google Scholar 

  4. G. Li, R. Zhu, and Y. Yang (2012). Nat. Photonics 6, 153.

    Article  CAS  Google Scholar 

  5. W. Xu, X. Zhu, X. Ma, H. Zhou, X. Li, S. Y. Jeong, H. Y. Woo, and Z. Zhou (2022). J. Mater. Chem. A 10, 13492.

    Article  CAS  Google Scholar 

  6. W. Wang, F. Qin, X. Jiang, X. Zhu, L. Hu, C. Xie, L. Sun, W. Zeng, and Y. Zhou (2022). Org. Electron. 87.

    Article  Google Scholar 

  7. R. Hermi, M. Mahdouani, R. Bourguiga, and S. Mahato (2022). Micro–Nanostruct. 168.

    Article  CAS  Google Scholar 

  8. W. Zeng, R. Ye, C. Yuan, Y. Shi, Q. Niu, W. Tan, J. Huang, R. Xia, and Y. Min (2022). Synth. Met. 290.

    Article  CAS  Google Scholar 

  9. A. A. Lima, G. TaquesTractz, A. G. Macedo, F. Thomazi, P. R. P. Rodrigues, and C. A. Dartora (2022). Opt. Mater. 132.

    Article  Google Scholar 

  10. Y. Wang, N. Li, M. Cui, Y. Li, X. Tian, X. Xu, Q. Rong, D. Yuan, G. Zhou, and L. Nian (2021). Org. Electron. 99.

    Article  CAS  Google Scholar 

  11. D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu (2012). Energy Environ. Sci. 5, 9662.

    Article  CAS  Google Scholar 

  12. J. Saghaei, A. Fallahzadeh, and T. Saghaei (2015). Org. Electron. 24, 188.

    Article  CAS  Google Scholar 

  13. Y. Xia and J. Ouyang (2012). Org. Electron. 13, 1785.

    Article  CAS  Google Scholar 

  14. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman (2009). ACS Nano 3, 1767.

    Article  CAS  PubMed  Google Scholar 

  15. H. Yuk, B. Lu, and X. Zhao (2019). Chem. Soc. Rev. 48, 1642.

    Article  CAS  PubMed  Google Scholar 

  16. B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu, J. Xu, and X. Zhao (2019). Nat. Commun. 10, 1043.

    Article  PubMed  PubMed Central  Google Scholar 

  17. D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G. Q. Lu, and H.-M. Cheng (2009). ACS Nano 3, 1745.

    Article  CAS  PubMed  Google Scholar 

  18. G. A. Snook, P. Kao, and A. S. Best (2011). J. Power Sources 196, 1.

    Article  CAS  Google Scholar 

  19. R. R. Søndergaard, M. Hösel, and F. C. Krebs (2013). J. Polym. Sci. B 51, 16.

    Article  Google Scholar 

  20. S. J. Kwon, J. H. Kang, S. J. Kim, W.-G. Koh, H. J. Song, and S. Lee (2018). Macromol. Res. 26, 410.

    Article  CAS  Google Scholar 

  21. W. Jang, S. Ahn, S. Park, J. H. Park, and D. H. Wang (2016). Nanoscale 8, 19557.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Xia, K. Sun, and J. Ouyang (2012). Adv. Mater. 24, 2436.

    Article  CAS  PubMed  Google Scholar 

  23. J. J. Lee, S. H. Lee, F. S. Kim, H. H. Choi, and J. H. Kim (2015). Org. Electron. 26, 191.

    Article  CAS  Google Scholar 

  24. A. W. Hains and T. J. Marks (2008). Appl. Phys. Lett. 92.

    Article  Google Scholar 

  25. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks (2008). Proc. Natl Acad. Sci. USA 105, 2783.

    Article  CAS  PubMed Central  Google Scholar 

  26. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang (2006). Appl. Phys. Lett. 88.

    Article  Google Scholar 

  27. G. Li, C.-W. Chu, V. Shrotriya, J. Huang, and Y. Yang (2006). Appl. Phys. Lett. 88.

    Article  Google Scholar 

  28. M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, K. M. Lau, and S. T. Lee (2006). J. Appl. Phys. 100.

    Article  Google Scholar 

  29. H. Choi, B. S. Kim, M. J. Ko, D.-K. Lee, H. Kim, S. H. Kim, and K. Kim (2012). Org. Electron. 13, 959.

    Article  CAS  Google Scholar 

  30. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen (2009). Appl. Phys. Lett. 94.

    Article  Google Scholar 

  31. Z. Hu, J. Zhang, X. Chen, S. Ren, Z. Hao, X. Geng, and Y. Zhao (2011). Sol. Energy Mater. Sol. Cells 95, 2173.

    Article  CAS  Google Scholar 

  32. Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, et al. (2015). ACS Appl. Mater. Interfaces 7, 7170.

    Article  CAS  PubMed  Google Scholar 

  33. J. Ram, R. G. Singh, R. Gupta, V. Kumar, F. Singh, and R. Kumar (2019). J. Electron. Mater. 48, 1174.

    Article  CAS  Google Scholar 

  34. J. Ram, R. G. Singh, F. Singh, V. Kumar, V. Chauhan, R. Gupta, U. Kumar, B. C. Yadav, and R. Kumar (2019). J. Mater. Sci. Mater. Electron. 30, 01728.

    Article  Google Scholar 

  35. Y. G. Xu, H. Xu, L. Wang, J. Yan, H. M. Li, Y. H. Song, L. Y. Huang, and G. B. T. Cai (2013). Dalton Trans. 42, 7604.

    Article  CAS  PubMed  Google Scholar 

  36. H. Hwan Jung, D. Ho Kim, C. Su Kim, T.-S. Bae, K. Bum Chung, and S. Yoon Ryu (2013). Appl. Phys. Lett. 102.

    Article  Google Scholar 

  37. M. L. Kaplan, S. R. Forrest, P. H. Schmidt, and T. Venkatesan (2012). J. Appl. Phys. 732, 120.

    Google Scholar 

  38. J. Di, J. X. Xia, Y. P. Ge, H. P. Li, H. Y. Ji, H. Xu, Q. Zhang, H. M. Li, and M. N. Li (2015). Appl. Catal. B 168, 51.

    Article  Google Scholar 

  39. X. Xu, J. Shen, N. Li, and M. Ye (2014). J. Alloy Compd. 616, 58.

    Article  CAS  Google Scholar 

  40. Y. Sun, Z. Yang, P. Gao, J. He, X. Yang, J. Sheng, S. Wu, Y. Xiang, and J. Ye (2016). Nanoscale Res. Lett. 11, 56.

    Article  Google Scholar 

  41. Md. Maniruzzaman, M. A. Rahman, K. Jeong, and J. Lee (2014). Mater. Sci. Semicond. Process. 27, 114.

    Article  CAS  Google Scholar 

  42. W. Zhang, W. Lan, M. H. Lee, J. Singh, F. Zhu, C. Dwivedi, T. Mohammad, V. Bharti, A. Patra, S. Pathak, and V. Dutta (2018). Sol. Energy 162, 78.

    Article  Google Scholar 

  43. Q. A. Yousif, K. M. Mahdi, and H. A. Alshamsi (2020). Optik Int. J. Light Electron. 219.

    Article  CAS  Google Scholar 

  44. A. A. Bortoti, A. de Freitas Gavanski, Y. R. Velazquez, A. Galli, and E. G. de Castro (2017). J. Solid State Chem. 252, 111.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The manuscript should not be submitted to more than one publication for simultaneous consideration. The submitted work should be original and should not have been published elsewhere in any form or language.

Author information

Authors and Affiliations

Authors

Contributions

PG and PV, study conceptualization and writing (original draft) the manuscript. TS, data curation, formal analysis and writing (review and editing), and funding acquisition and project administration.

Corresponding author

Correspondence to P. Gurudevi.

Ethics declarations

Conflict of interest

The authors declare they have no competing of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 410 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurudevi, P., Venkateswari, P., Sivakumar, T. et al. Solution Processed WO3 and PEDOT:PSS Composite for Hole Transport Layer in ITO-Free Organic Solar Cells. J Clust Sci 34, 2135–2145 (2023). https://doi.org/10.1007/s10876-022-02368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02368-6

Keywords

Navigation