Skip to main content
Log in

Influence of the Molecular Weight of Poly (Ethylene Glycol) on the Aqueous Dispersion State of Magnetic Nanoparticles: Experiments and Monte Carlo Simulation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Here, we used experiments and Monte Carlo simulations (MC) to identify appropriate poly (ethylene) glycol (PEG) polymer molecular weight (Mw) as the coating agent for iron oxide nanoparticles (IONPs) resulting in individual particles in water. IONPs coated with PEG Mw’s ranging from 1500 to 6000 Da showed highly stable dispersions for more than a year. Transmission electron microscopy (TEM) results of the dispersions revealed that particles coated with lower PEG Mw were aggregated, which shifted to individual form with increasing PEG Mw used for coating. We find that this transformation is due to increased PEG layer shell thickness (from 1.47 to 6.46 nm) with increasing PEG Mw (from 1500 to 6000 Da), which imparted sufficient repulsive steric forces to overcome the attractive van der Waals and magnetic forces. To predict appropriate PEG Mw resulting individual IONPs in water, the number density distribution of different PEG Mw coated particles was determined using MC simulation which employs interparticle potentials between the interacting particles as a function of their interparticle distance. The predictions gave very good agreement with our’s and others’ experimental data. Thus, the study helps to identify a suitable polymer Mw as a coating agent, resulting in individual nanoparticle dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [C. Ravikumar], upon request.

Code Availability

An algorithm is provided in the article. The codes used for simulation are available from the corresponding author, [C. Ravikumar], upon request.

References

  1. C. Cruje and D. Chithrani (2014). Rev Nanosci Nanotechnol. https://doi.org/10.1166/rnn.2014.1042.

    Article  Google Scholar 

  2. J. M. Harris, Poly (ethylene glycol) chemistry: biotechnical and biomedical applications (Springer Science & Business Media, 1992).

    Book  Google Scholar 

  3. D. Hutanu (2014). Mod Chem Appl. https://doi.org/10.4172/2329-6798.1000132.

    Article  Google Scholar 

  4. A. P. Khandhar, P. Keselman, S. J. Kemp, R. M. Ferguson, P. W. Goodwill, S. M. Conolly, and K. M. Krishnan (2017). Nanoscale. https://doi.org/10.1039/C6NR08468K.

    Article  PubMed  PubMed Central  Google Scholar 

  5. K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert (2010). Angew Chem Int Ed. https://doi.org/10.1002/anie.200902672.

    Article  Google Scholar 

  6. J. Sosa Acosta, C. Iriarte-Mesa, G. Ortega, and A. Díaz-García (2020). Top Curr Chem. https://doi.org/10.1007/s41061-019-0277-9.

    Article  Google Scholar 

  7. J. Sosa Acosta, J. Silva, L. Fernandez Izquierdo, S. D. Castañón, M. Ortiz, J. C. Zuaznabar-Gardona, and A. Díaz-García (2018). Coll Surf A. https://doi.org/10.1016/j.colsurfa.2018.02.062.

    Article  Google Scholar 

  8. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller (2008). Chem Rev. https://doi.org/10.1021/cr068445e.

    Article  PubMed  Google Scholar 

  9. L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur (2012). Chem Rev. https://doi.org/10.1021/cr300068p.

    Article  PubMed  Google Scholar 

  10. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen (2011). Adv Drug Delivery Rev. https://doi.org/10.1016/j.addr.2010.05.006.

    Article  Google Scholar 

  11. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar (2013). Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2013.02.003.

    Article  Google Scholar 

  12. A. B. Abou Hammad, M. E. Abd El-Aziz, M. S. Hasanin, and S. Kamel (2019). Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.03.038.

    Article  PubMed  Google Scholar 

  13. A. H. Basta, H. El-Saied, M. S. Hasanin, and M. M. El-Deftar (2018). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.11.061.

    Article  PubMed  Google Scholar 

  14. M. S. Hasanin and S. A. Al Kiey (2020). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.06.040.

    Article  PubMed  Google Scholar 

  15. F. T. Hsu, Z. H. Wei, Y. C. Y. Hsuan, W. Lin, Y. C. Su, C. H. Liao, and C. L. Hsieh (2018). Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2018.1499661.

    Article  PubMed  Google Scholar 

  16. E. K. U. Larsen, et al. (2009). ACS Nano. https://doi.org/10.1021/nn900330m.

    Article  PubMed  Google Scholar 

  17. E. K. U. Larsen, et al. (2012). Nanoscale. https://doi.org/10.1039/C2NR11554A.

    Article  PubMed  Google Scholar 

  18. C. A. Quinto, P. Mohindra, S. Tong, and G. Bao (2015). Nanoscale. https://doi.org/10.1039/c5nr02718g.

    Article  PubMed  PubMed Central  Google Scholar 

  19. C. Yue-Jian, T. Juan, X. Fei, Z. Jia-Bi, G. Ning, Z. Yi-Hua, D. Ye, and G. Liang (2010). Drug Dev Ind Pharm. https://doi.org/10.3109/03639041003710151.

    Article  PubMed  Google Scholar 

  20. M. Ferrari (2005). Nat Rev Cancer. https://doi.org/10.1038/nrc1566.

    Article  PubMed  Google Scholar 

  21. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer (2007). Nat Nanotechnol. https://doi.org/10.1038/nnano.2007.387.

    Article  PubMed  Google Scholar 

  22. S. Salmaso and P. Caliceti (2013). J Drug Deliv. https://doi.org/10.1155/2013/374252.

    Article  PubMed  PubMed Central  Google Scholar 

  23. S. Y. Fam, C. F. Chee, C. Y. Yong, K. L. Ho, A. R. Mariatulqabtiah, and W. S. Tan (2020). Nanomaterials. https://doi.org/10.3390/nano10040787.

    Article  PubMed  PubMed Central  Google Scholar 

  24. E. Illés, M. Szekeres, I. Toth, K. Farkas, I. Földesi, A. Szabo, B. Iván, and E. Tombácz (2018). Nanomaterials. https://doi.org/10.3390/nano8100776.

    Article  PubMed  PubMed Central  Google Scholar 

  25. K. G. Neoh and E. T. Kang (2011). Polym Chem. https://doi.org/10.1039/C0PY00266F.

    Article  Google Scholar 

  26. W. Xue, Y. Liu, N. Zhang, Y. Yao, P. Ma, H. Wen, S. Huang, Y. Luo, and H. M. Fan (2018). Int J Nanomed. https://doi.org/10.2147/IJN.S165451.

    Article  Google Scholar 

  27. C. C. Hanot, Y. S. Choi, T. B. Anani, and D. Soundarrajan (2016). Int. J. Mol. Sci. 17, 54.

    Article  Google Scholar 

  28. L. H. Deng, et al. (2021). Int J Nanomed. https://doi.org/10.2147/IJN.S271461.

    Article  Google Scholar 

  29. L. H. Dubois, B. R. Zegarski, and R. G. Nuzzo (1986). Langmuir. https://doi.org/10.1021/la00070a006.

    Article  Google Scholar 

  30. A. Ali, H. Zafar, M. Zia, I. Haq, A. Phull, J. Sarfraz Ali, and A. Hussain (2016). Nanotechnol Sci Appl. https://doi.org/10.2147/NSA.S99986.

    Article  PubMed  PubMed Central  Google Scholar 

  31. K. Davis, B. Qi, M. Witmer, C. L. Kitchens, B. A. Powell, and O. T. Mefford (2014). Langmuir. https://doi.org/10.1021/la502204g.

    Article  PubMed  PubMed Central  Google Scholar 

  32. J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir (2011). Nanomedicine. https://doi.org/10.2217/nnm.11.19.

    Article  PubMed  Google Scholar 

  33. C. Ravikumar, S. Kumar, and R. Bandyopadhyaya (2012). Coll. Surf. A. https://doi.org/10.1016/j.colsurfa.2012.02.007.

    Article  Google Scholar 

  34. S. Kumar, C. Ravikumar, and R. Bandyopadhyaya (2010). Langmuir. https://doi.org/10.1021/la1017196.

    Article  PubMed  Google Scholar 

  35. S. García-Jimeno and J. Estelrich (2013). Coll Surf A. https://doi.org/10.1016/j.colsurfa.2012.12.022.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Department of Science and Technology, Science and Engineering Research Board, Extra Mural Research Funding Scheme (DST/SERB/EMR), India [No.: EMR/2016/003320] for providing financial support for the work. We thank the sophisticated analytical instrumental facility (SAIF) of the Indian Institute of Technology Bombay, India for providing TEM facilities. We also thank Aimil Ltd, India for their support in analyzing the particle size distribution and zeta potential measurements of samples using Malvern Zetasizer Nano ZS. We also thank Visvesvaraya National Institute of Technology for providing other characterization facilities.

Funding

Financial support was provided by the Department of Science and Technology, Science and Engineering Research Board, Extra Mural Research Funding Scheme (DST/SERB/EMR), India [No.: EMR/2016/003320].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ravikumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3245 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singapati, A.Y., Muthuraja, V., Kuthe, A.M. et al. Influence of the Molecular Weight of Poly (Ethylene Glycol) on the Aqueous Dispersion State of Magnetic Nanoparticles: Experiments and Monte Carlo Simulation. J Clust Sci 34, 1975–1987 (2023). https://doi.org/10.1007/s10876-022-02360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02360-0

Keywords

Navigation