Skip to main content
Log in

Formulation and Optimization of Quercetin Nanoemulsion for Enhancing Its Dissolution Rate, Bioavailability and Cardioprotective Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study deciphers the formulation of Quercetin (QRN) loaded nanoemulsion (NE). The nanoemulsion was prepared by using Labrafil M 1944CS as oil phase, Labrafac PG as surfactant, Transcutol P as co-surfactant. The composition was optimized by applying three-level central composite design. The optimized formulation showed droplet size of 41.22 ± 6.38 nm, zeta potential was − 38.52 ± 5.16 mV and drug loading were 87.67 ± 3.32%. The results of dissolution, permeability and oral bioavailability showed about 11.70 folds, 3.44 folds and 28.29 folds, respectively in case of NE-QRN as compared to its naïve form. The results of particle size, zeta potential, and drug loading showed a non-significant change in the response of fresh and aged NE, which indicated that the formulation was stable. The outcomes of successful development of NE-QRN with enhanced bioavailability profile indicated towards possibility to explore this formulation for pharmacodynamic assessment of oxidative stress based metabolic diseases. In vitro results on H9C2 cell line indicated lower cellular proliferation rate after treatment with NE-QRN with decreased cytoplasmic expression of Ace protein. The NE was stable at accelerated stability conditions. Overall results indicated successful development of NE-QRN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. P. S. Sandhu, S. Beg, R. Kumar, O. Katare, and B. Singh (2017). J. Liq. Chromatogr. Relat. Technol. 40, 506.

    Article  CAS  Google Scholar 

  2. M. Lesjak, I. Beara, N. Simin, D. Pintać, T. Majkic, K. Bekvalac, D. Orčić, and N. Mimica-Dukić (2018). J. Funct. Foods 40, 68.

    Article  CAS  Google Scholar 

  3. Q. Ou, Z. Zheng, Y. Zhao, and W. Lin (2020). Int. J. Food Sci. Nutr. 71, 152.

    Article  CAS  PubMed  Google Scholar 

  4. R. Khursheed, S. K. Singh, S. Wadhwa, M. Gulati, and A. Awasthi (2020). Drug Discov. Today 25, 209.

    Article  CAS  PubMed  Google Scholar 

  5. S. Pathak, S. Regmi, T. T. Nguyen, B. Gupta, M. Gautam, C. S. Yong, J. O. Kim, Y. Son, J.-R. Kim, and M. H. Park (2018). Acta Biomater. 75, 287.

    Article  CAS  PubMed  Google Scholar 

  6. E. Ahmadian, A. Eftekhari, T. Kavetskyy, A. Y. Khosroushahi, V. A. Turksoy, and R. Khalilov (2020). Nanomedicine 167, 104586.

    CAS  Google Scholar 

  7. L. Talarico, M. Consumi, G. Leone, G. Tamasi, and A. Magnani (2021). Molecules 26, 2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Saha, J. Kundu, R. J. Verma, and P. K. Chowdhury (2020). Materialia 9, 100605.

    Article  CAS  Google Scholar 

  9. D. J. McClements, E. A. Decker, and J. Weiss (2007). J. Food Sci. 72, R109.

    Article  CAS  PubMed  Google Scholar 

  10. R. Khursheed, S. K. Singh, S. Wadhwa, M. Gulati, B. Kapoor, S. K. Jain, K. Gowthamarajan, F. Zacconi, D. K. Chellappan, and G. Gupta (2021). Int. J. Biol. Macromol. 189, 744.

    Article  CAS  PubMed  Google Scholar 

  11. A. K. Ramanunny, S. Wadhwa, M. Gulati, S. K. Singh, B. Kapoor, H. Dureja, D. K. Chellappan, K. Anand, K. Dua, and R. Khursheed (2021). Eur. J. Pharmacol. 890, 173691.

    Article  CAS  PubMed  Google Scholar 

  12. A. K. Ramanunny, S. Wadhwa, S. Kumar Singh, B. Kumar, M. Gulati, A. Kumar, S. Almawash, A. Al-Saqr, K. Gowthamarajan, K. Dua, H. Singh, S. Vishwas, R. Khursheed, S. Rahana Parveen, A. Venkatesan, K. R. Paudel, P. M. Hansbro, and D. Kumar Chellappan (2022). Int J Pharm. https://doi.org/10.1016/j.ijpharm.2022.121882.

    Article  PubMed  Google Scholar 

  13. A. H. Saberi, Y. Fang, and D. J. McClements (2013). J.Colloid Interface Sci. 391, 95–102.

    Article  CAS  PubMed  Google Scholar 

  14. F. Kesisoglou, S. Panmai, and Y. Wu (2007). Adv. Drug Deliv. Rev. 59, 631.

    Article  CAS  PubMed  Google Scholar 

  15. N. K. Pandey, S. K. Singh, M. Gulati, B. Kumar, B. Kapoor, D. Ghosh, R. Kumar, R. Khursheed, A. Awasthi, and G. Kuppusamy (2020). J. Drug Deliv. Sci. Technol. 60, 102083.

    Article  CAS  Google Scholar 

  16. K. V. Mahesh, S. K. Singh, and M. Gulati (2014). Powder Technol. 256, 436.

    Article  CAS  Google Scholar 

  17. S. Som, S. K. Singh, G. L. Khatik, B. Kapoor, M. Gulati, G. Kuppusamy, N. K. Anandhakrishnan, B. Kumar, A. K. Yadav, and R. Kumar (2020). Assay Drug Dev. Technol. 18, 11.

    Article  CAS  PubMed  Google Scholar 

  18. R. Khursheed, S. K. Singh, S. Wadhwa, M. Gulati, A. Awasthi, R. Kumar, A. K. Ramanunny, B. Kapoor, P. Kumar, and L. Corrie (2020). Carbohydr. Polym. 250, 116996.

    Article  CAS  PubMed  Google Scholar 

  19. P. Sharma, S. K. Singh, N. K. Pandey, S. Y. Rajesh, P. Bawa, B. Kumar, M. Gulati, S. Singh, S. Verma, and A. K. Yadav (2018). Powder Technol. 338, 836.

    Article  CAS  Google Scholar 

  20. S. Y. Rajesh, S. K. Singh, N. K. Pandey, P. Sharma, P. Bawa, B. Kumar, M. Gulati, S. K. Jain, K. Gowthamarajan, and S. Singh (2018). Drug Dev. Ind. Pharm. 44, 1056.

    Article  CAS  PubMed  Google Scholar 

  21. N. Chandrasekaran (2015). Asian J. Pharm. 9, 23.

    Article  Google Scholar 

  22. S. Shafiq, F. Shakeel, S. Talegaonkar, F. J. Ahmad, R. K. Khar, and M. Ali (2007). Eur. J. Pharm. Biopharm. 66, 227.

    Article  CAS  PubMed  Google Scholar 

  23. B. Kumar, V. Garg, S. Singh, N. K. Pandey, A. Bhatia, T. Prakash, M. Gulati, and S. K. Singh (2018). Powder Technol. 326, 425.

    Article  CAS  Google Scholar 

  24. V. Garg, P. Kaur, S. K. Singh, B. Kumar, P. Bawa, M. Gulati, and A. K. Yadav (2017). Eur. J. Pharm. Sci. 109, 297.

    Article  CAS  PubMed  Google Scholar 

  25. S. Zhang, Z. Xie, M. Xu, and L. Shi (2015). Pharm. Biol. 53, 1352.

    Article  CAS  PubMed  Google Scholar 

  26. R. Khursheed, S. K. Singh, B. Kumar, S. Wadhwa, M. Gulati, A. Anupriya, A. Awasthi, S. Vishwas, J. Kaur, and L. Corrie (2021). Int. J. Pharm. 612, 121306.

    Article  PubMed  Google Scholar 

  27. A. Sharma, B. Kumar, S. K. Singh, M. Gulati, Y. Vaidya, H. Rathee, D. Ghai, A. H. Malik, A. K. Yadav, and P. Maharshi (2018). Curr. Drug Deliv. 15, 367.

    Article  CAS  PubMed  Google Scholar 

  28. R. Kumar, R. Khursheed, R. Kumar, A. Awasthi, N. Sharma, S. Khurana, B. Kapoor, N. Khurana, S. K. Singh, and K. Gowthamarajan (2019). J. Drug Deliv. Sci. Technol. 54, 101252.

    Article  CAS  Google Scholar 

  29. N. K. Pandey, S. K. Singh, B. Kumar, M. Gulati, S. Vishwas, R. Khursheed, H. Dureja, D. K. Chellappan, N. K. Jha, A. Sharma, S. K. Jha, P. K. Gupta, S. Gupta, G. Gupta, P. Prasher, and K. Dua (2022). Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-022-19371-z.

    Article  PubMed  PubMed Central  Google Scholar 

  30. G. Kaur, S. K. Singh, R. Kumar, B. Kumar, Y. Kumari, M. Gulati, N. K. Pandey, K. Gowthamarajan, D. Ghosh, and A. Clarisse (2020). J. Drug Deliv. Sci. Technol. 60, 101980.

    Article  CAS  Google Scholar 

  31. Y. Kumari, S. K. Singh, R. Kumar, B. Kumar, G. Kaur, M. Gulati, D. Tewari, K. Gowthamarajan, V. V. S. N. R. Karri, and C. Ayinkamiye (2020). Int. J. Biol. Macromol. 149, 976.

    Article  CAS  PubMed  Google Scholar 

  32. J. Jyoti, N. K. Anandhakrishnan, S. K. Singh, B. Kumar, M. Gulati, K. Gowthamarajan, R. Kumar, A. K. Yadav, B. Kapoor, and N. K. Pandey (2019). Drug Deliv. Transl. Res. 9, 848.

    Article  CAS  PubMed  Google Scholar 

  33. D. Ghosh, S. K. Singh, R. Khursheed, N. K. Pandey, B. Kumar, R. Kumar, Y. Kumari, G. Kaur, A. Clarisse, and A. Awasthi (2020). Drug Dev. Ind. Pharm. 46, 597.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to KIET college of Pharmacy for providing necessary facilities.

Funding

This article was not funded.

Author information

Authors and Affiliations

Authors

Contributions

NA: Methodology, Data Curation and Writing—original draft. VK: Conceptualization, Validation, Supervision and Writing—review & editing.

Corresponding author

Correspondence to Vinay Kumar.

Ethics declarations

Conflict of interest

Declared None.

Ethical Approval and Consent to Participate

The study protocol was approved by Institutional Animal Ethics Committee (IAEC) of KIET School of Pharmacy with approval no IAEC/KSOP/2021-22/05 before beginning of the experiment.

Consent for Publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsabeelah, N., Kumar, V. Formulation and Optimization of Quercetin Nanoemulsion for Enhancing Its Dissolution Rate, Bioavailability and Cardioprotective Activity. J Clust Sci 34, 1893–1906 (2023). https://doi.org/10.1007/s10876-022-02351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02351-1

Keywords

Navigation