Skip to main content

Advertisement

Log in

Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Presently, an emerging class of two-dimensional transitional metallic (M) carbides or nitrides (X) referred as 2-D MXene (M–X) has emerged and adjudged effective for energy storage gadgets. This paper elaborates on novel trends in production of conducting polymers (CP)/MXene (MX) hybrid nanoclusters/nanoarchitectures for energy storage electrodes/devices. Due to escalating quest for micro-electronics for wearables and flexible electronics, increased focus has been given to micro-supercapacitors (MSCs). Appropriate electrode material selection constitutes a fundamental choice in design and fabrication of MSCs. Hence, special focus is allotted to novel trends in MX/polyaniline (PAN), MX/polypyrrole (PPy), and MX/Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) nanoarchitectures for energy storage applications especially for MSCs, metal-ion batteries and other energy storage systems. Further elucidation is given to emerging spheres and issues confronting these devices for effective energy storage functions, in addition to prospects for enhancing their performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C. Du, X. Zhao, X. Z. Wang, H. Yu, and Q. Ye (2021). Recent advanced on the MXene–organic hybrids: design, synthesis, and their applications. Nanomaterials 11, 166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Zhu, S. Li, B. Tang, H. Liang, B.-J. Liu, G. Xiao, and F.-X. Xiao (2021). MXene-motivated accelerated charge transfer over TMCs quantum dots for solar-powered photoreduction catalysis. J. Catal. 404, 56–66.

    Article  CAS  Google Scholar 

  3. H.-J. Lin, Q.-L. Mo, S. Xu, Z.-Q. Wei, X.-Y. Fu, X. Lin, and F.-X. Xiao (2020). Unlocking photoredox selective organic transformation over metal-free 2-D transition metal chalcogenides-Mxene heterostructures. J. Catal. 391, 485–496.

    Article  CAS  Google Scholar 

  4. A. C. Ezika, E. R. Sadiku, C. I. Idumah, S. S. Ray, and Y. Hamam (2022). On energy storage capacity of conductive MXene hybrid nanoarchitectures. J. Energy Storage 45, 103686.

    Article  Google Scholar 

  5. O. Mashtalir, M. R. Lukatskaya, A. I. Kolesnikov, E. Raymundo-Pinero, M. Naguib, M. W. Barsoum, and Y. Gogotsi (2016). The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133. https://doi.org/10.1039/c6nr01462c.

    Article  CAS  PubMed  Google Scholar 

  6. A. Tanvir, P. Sobolčiak, A. Popelka, M. Mrlik, Z. Spitalsky, M. Micusik, J. Prokes, and I. Krupa (2019). Electrically conductive, transparent polymeric nanocomposites modified by 2D Ti3C2Tx (MXene). Polymers 11, 1272.

    Article  PubMed  PubMed Central  Google Scholar 

  7. D. Wei, W. Wu, J. Zhu, C. Wang, C. Zhao, and L. Wang (2020). A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. J. Electroanal. Chem. 877, 114538.

    Article  CAS  Google Scholar 

  8. A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C. A. Carrero, and M. Beidaghi (2018). Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133. https://doi.org/10.1039/c8ta05807e.

    Article  CAS  Google Scholar 

  9. J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, and J. Xu (2018). A Conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14, 1803786. https://doi.org/10.1002/smll.201803786.

    Article  CAS  Google Scholar 

  10. S. Chen, Y. Xiang, W. Xu, and C. Peng (2019). A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg. Chem. Front. 6, 199–208. https://doi.org/10.1039/c8qi00957k.

    Article  CAS  Google Scholar 

  11. Y. Tang, J. Zhu, C. Yang, and F. Wang (2016). Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J. Alloys Compd. 685, 194–201. https://doi.org/10.1016/j.jallcom.2016.05.221.

    Article  CAS  Google Scholar 

  12. K. Zhang, G. Ying, L. Liu, F. Ma, L. Su, C. Zhang, D. Wu, X. Wang, and Y. Zhou (2019). Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electrochemical performance for supercapacitors. Materials 12, 188. https://doi.org/10.3390/ma12010188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Zhu, X. Lu, and L. Wang (2016). Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors. RSC Adv. 6, 98506–98513. https://doi.org/10.1039/c6ra15651g.

    Article  CAS  Google Scholar 

  14. W. Yuanming, W. Xue, L. Xiaolong, Y. Bai, H. Xiao, Y. Liu, and G. Yuan (2021). Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 405, 126664.

    Article  Google Scholar 

  15. X. Zang, Y. Hou, T. Wang, R. Zhang, F. Kang, and H. Zhu (2019). Temperature-resistant and flexible supercapacitors based on 10-inch wafer-scale nanocarbon films. Sci. China-Mater. 62, 947–954.

    Article  CAS  Google Scholar 

  16. K. Tan, L. Samylingam, A. Navid, R. Saidur, and K. Kadirgama (2021). Optical and conductivity studies of polyvinyl alcohol-MXene (PVA-MXene) nanocomposite thin films for electronic applications. Opt. Laser Technol. 136, 106772.

    Article  CAS  Google Scholar 

  17. M. Mani, S. Gourav, and O. Satishchandra (2021). Polypyrrole-encapsulated polyoxomolybdate decorated MXene as a functional 2D/3D nanohybrid for a robust and high performance Li-Ion battery. ACS Appl. Energy Mater. 4 (5), 4541–4550.

    Article  Google Scholar 

  18. X. Wang, Y. Wang, D. Liu, X. Li, H. Xiao, Y. Ma, M. Xu, G. Yuan, and G. Chen (2021). Opening MXene ion transport channels by intercalating PANI nanoparticles from the self-assembly approach for high volumetric and areal energy density supercapacitors. ACS Appl. Mater. Interfaces 13 (26), 30633–30642.

    Article  CAS  PubMed  Google Scholar 

  19. M. Beidaghi and Y. Gogotsi (2014). Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7 (3), 867–884.

    Article  CAS  Google Scholar 

  20. J. Michael, Z. Qifeng, and W. Danling (2019). Titanium carbide MXene: Synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomater. Nanotechnol. 9, 1847980418824470.

    Article  CAS  Google Scholar 

  21. M. Boota, B. Anasori, C. Voigt, M. Q. Zhao, M. W. Barsoum, and Y. Gogotsi (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522. https://doi.org/10.1002/adma.201504705W.

    Article  CAS  PubMed  Google Scholar 

  22. M. Naguib and Y. Gogotsi (2015). Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 48, 128–135.

    Article  CAS  PubMed  Google Scholar 

  23. J. Zhu, C. Yang, F. Wang, and M. Cao (2016). Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163, A785. https://doi.org/10.1149/2.0981605jes.

    Article  CAS  Google Scholar 

  24. T. Liu, L. Chenyang, L. Huichao, Z. Shuo, Y. Jinglong, Z. Jie, Y. Jiali, J. Muwei, Z. Caizhen, and X. Jian (2021). Tear resistant Tyvek/Ag/poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate (PE-DOT:PSS)/carbon nanotubes electrodes for flexible high-performance supercapacitors. Chem. Eng. J. 420 (2), 127665.

    Article  CAS  Google Scholar 

  25. Q. Chunhui, L. Song, Z. Yaoming, W. Tingmei, W. Qihua, and C. Shoubing (2021). Surface modification of Ti3C2-MXene with polydopamine and amino silane for high performance nitrile butadiene rubber composites. Tribol. Int. 163, 107150.

    Article  Google Scholar 

  26. W. Zheng, P. Zhang, W. Tian, Y. Wang, Y. Zhang, J. Chen, and Z. Sun (2017). Microwave-assisted synthesis of SnO2-Ti3C2 nanocomposite for enhanced supercapacitive performance. Mater. Lett. 209, 122–125. https://doi.org/10.1016/j.matlet.2017.07.13.

    Article  CAS  Google Scholar 

  27. Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao, and J. Zhu (2019). 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sour. 414, 540–546. https://doi.org/10.1016/j.jpowsour.2019.01.036.

    Article  CAS  Google Scholar 

  28. Q. Fu, X. Wang, N. Zhang, J. Wen, L. Li, H. Gao, and X. Zhang (2018). Self-assembled Ti3C2Tx/ SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid Interface Sci. 511, 128–134. https://doi.org/10.1016/j.jcis.2017.09.104.

    Article  CAS  PubMed  Google Scholar 

  29. L. Yang, W. Zheng, P. Zhang, J. Chen, W. B. Tian, Y. M. Zhang, and Z. M. Sun (2018). MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 830, 1–6. https://doi.org/10.1016/j.jelechem.2018.10.024.

    Article  CAS  Google Scholar 

  30. M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M. W. Barsoum, and Y. Gogotsi (2015). Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345. https://doi.org/10.1002/adma.201404140.

    Article  CAS  PubMed  Google Scholar 

  31. S. Xu, G. Wei, J. Li, W. Han, and Y. Gogotsi (2017). Flexible MXene graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 5, 17442–17451. https://doi.org/10.1039/c7ta05721k.

    Article  CAS  Google Scholar 

  32. Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan, H. Kang, B. Su, Z. Cheng, and Y. Liu (2018). Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750. https://doi.org/10.1002/advs.20180075.

    Article  Google Scholar 

  33. A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dion, and Y. Gogotsi (2019). Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 7, 269–277. https://doi.org/10.1039/c8ta09810g.

    Article  CAS  Google Scholar 

  34. C. Yu, Y. Gong, R. Chen, M. Zhang, J. Zhou, J. An, F. Lv, S. Guo, and G. Sun (2018). A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube Scaffold and MXene nanosheets. Small 14, 1801203. https://doi.org/10.1002/smll.201801203.

    Article  CAS  Google Scholar 

  35. Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang, et al. (2018). High performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14, 1802225. https://doi.org/10.1002/smll.201802225.

    Article  CAS  Google Scholar 

  36. L. Yang, W. Zheng, P. Zhang, J. Chen, W. Zhang, W. B. Tian, and Z. M. Sun (2019). Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim. Acta 300, 349–356. https://doi.org/10.1016/j.electacta.2019.01.122.

    Article  CAS  Google Scholar 

  37. X. J. Wen, C. G. Niu, M. Ruan, L. Zhang, and G. M. Zeng (2017). AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation. J. Colloid Interface Sci. 497, 368–377. https://doi.org/10.1016/j.nanoen.2017.06.009.

    Article  CAS  PubMed  Google Scholar 

  38. D. K. Lee, C. W. Ahn, and J. W. Lee (2022). Electrostatic self-assembly of 2-dimensional MXene-wrapped sulfur composites for enhancing cycle performance of lithium–sulfur batteries. Electrochim. Acta 402, 139539.

    Article  CAS  Google Scholar 

  39. C. Yang, Y. Tang, Y. Tian, Y. Luo, M. F. U. Din, X. Yin, and W. Que (2018). Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 8, 1802087. https://doi.org/10.1002/aenm.201802087.

    Article  CAS  Google Scholar 

  40. A. Ajnsztajn, S. Ferguson, J. Thostenson, E. Ngaboyamahina, B. Parker, T. Glass, and R. Stiff- (2020). Transparent MXene-polymer supercapacitive film deposited using RIR-MAPLE. Crystals 10, 152.

    Article  CAS  Google Scholar 

  41. M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei, Q. Xue, Y. Huang, Z. Wang, H. Li, Q. Huang, et al. (2016). Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969.

    Article  Google Scholar 

  42. X. Zhang, J. Li, J. Li, L. Han, T. Lu, X. Zhang, G. Zhu, and L. Pan (2020). 3D TiO 2 @nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as an-ode material for high-performance lithium-ion batteries. Chem. Eng. J. 385, 123394.

    Article  CAS  Google Scholar 

  43. G. Kresse (1993). Ab initio molecular dynamics for liquid metals. J. Non-Ctyst. Solids 192&193, 222–229. https://doi.org/10.1103/PhysRevB.47.558.

    Article  Google Scholar 

  44. G. Kresse and J. Furthmüller (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Am. Phys. Soc. 54, 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  45. F. M. Hassan, V. Chabot, J. Li, B. K. Kim, L. Ricardez-Sandoval, and A. Yu (2013). Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 1, 2904.

    Article  CAS  Google Scholar 

  46. J. Fu, J. Yun, S. Wu, L. Li, L. Yu, and K. H. Kim (2018). Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 10, 34212–34221.

    Article  CAS  PubMed  Google Scholar 

  47. H. Xu, D. Zheng, F. Liu, W. Li, and J. Lin (2020). Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 8, 5853–5858.

    Article  CAS  Google Scholar 

  48. C. Chen, M. Boota, X. Xie, M. Zhao, B. Anasori, C. E. Ren, L. Miao, J. Jiang, and Y. Gogotsi (2017). Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. J. Mater. Chem. A 5, 5260–5265.

    Article  CAS  Google Scholar 

  49. L. Qin, Q. Tao, X. Liu, M. Fahlman, J. Halim, P. O. A. Perssona, J. Rosen, and F. Zhang (2019). Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 60, 734–742.

    Article  CAS  Google Scholar 

  50. C. Zhang, L. Wang, W. Lei, Y. Wu, C. Li, et al. (2019). Achieving quick charge/discharge rate of 3.0 Vs−1 by 2D titanium carbide (MXene) via N-doped carbon intercalation. Mater. Lett. 234, 21–25. https://doi.org/10.1016/j.matlet.2018.08.124.

    Article  CAS  Google Scholar 

  51. T. Zhao, J. Zhang, Z. Du, Y. Liu, G. Zhou, and J. Wang (2017). Dopamine- derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance. Electrochim. Acta 254, 308–319. https://doi.org/10.1016/j.electacta.2017.09.144.

    Article  CAS  Google Scholar 

  52. Q. X. Xia, N. M. Shinde, J. M. Yun, T. Zhang, R. S. Mane, S. Mathur, and K. H. Kim (2018). Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta 271, 351–360. https://doi.org/10.1016/j.electacta.2018.03.16.

    Article  CAS  Google Scholar 

  53. X. Dong, B. Ding, H. Guo, H. Dou, and X. Zhang (2018). Superlithiated polydopamine derivative for high-capacity and high-rate anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 38101–38108.

    Article  CAS  PubMed  Google Scholar 

  54. Z. Lou, L. Li, L. Wang, and G. Shen (2017). Recent progress of self-powered sensing systems for wearable electronics. Small 13, 1701791.

    Article  Google Scholar 

  55. Y.-G. Park, S. Lee, and J.-U. Park (2019). Recent progress in wireless sensors for wearable electronics. Sensors 19, 4353.

    Article  PubMed  PubMed Central  Google Scholar 

  56. H. Jiang, L. Zheng, Z. Liu, and X. Wang (2019). Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2, 1077–1094.

    Article  Google Scholar 

  57. A. Nathan, A. Ahnood, M. T. Cole, L. Sungsik, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, et al. (2012). Flexible electronics: the Next ubiquitous platform. Proc. IEEE 100 (1486–1517), 7.

    Google Scholar 

  58. H. Ling, S. Liu, Z. Zheng, and F. Yan (2018). Organic flexible electronics. Small Methods 2, 1800070.

    Article  Google Scholar 

  59. H. Kim, Z. Wang, and H. N. Alshareef (2019). MXetronics: Electronic and photonic applications of MXenes. Nano. Energy 60, 179–197.

    Article  CAS  Google Scholar 

  60. Y. Liu, Y. He, E. Vargun, T. Plachy, P. Saha, and Q. Cheng (2020). 3D porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage. Nanomaterials 10, 695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. J. Zhao, F. Liu, and W. Li (2019). Phosphate ion-modified RuO2/Ti3C2 composite as a high-performance supercapacitor material. Nanomaterials 9, 377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Y. Ibrahim, A. Mohamed, A. Abdelgawad, K. Eid, A. Abdullah, and A. Elzatahry (1916). The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: deep Insights into the supercapacitor. Nanomaterials 2020, 10.

    Google Scholar 

  63. F. P. Zhang, J. L. Shi, J. W. Zhang, X. Y. Yang, and J. X. Zhang (2019). Grain alignment modulation and observed electrical transport properties of Ca3Co4O9 ceramics. Results Phys. 12, 321–326.

    Article  Google Scholar 

  64. C. Tan and H. Zhang (2015). Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731.

    Article  CAS  PubMed  Google Scholar 

  65. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275.

    Article  PubMed  Google Scholar 

  66. L. Liu, G. Ying, C. Sun, H. Min, J. Zhang, Y. Zhao, D. Wen, Z. Ji, X. Liu, C. Zhang, and C. Wang (1825). MXene (Ti3C2Tx) Functionalized short carbon fibers as a cross-scale mechanical reinforcement for epoxy composites. Polymers 2021, 13.

    Google Scholar 

  67. X. Zhang, J. Li, J. Li, L. Han, T. Lu, X. Zhang, G. Zhu, and L. Pan (2020). 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 385, 123394.

    Article  CAS  Google Scholar 

  68. J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu, L. Pan, and F. Xuan (2019). Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5, 1900285.

    Article  Google Scholar 

  69. P. Sobolciak, A. Ali, M. K. Hassan, M. I. Helal, A. Tanvir, and A. Popelka (2017). 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE 12, e0183705.

    Article  PubMed  PubMed Central  Google Scholar 

  70. S. S. Barkade, D. V. Pinjari, A. K. Singh, P. R. Gogate, J. B. Naik, S. H. Sonawane, M. Ashok-kumar, and A. B. Pandit (2013). Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole-zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind. Eng. Chem. Res. 52, 7704–7712.

    Article  CAS  Google Scholar 

  71. B. Anasori, M. R. Lukatskaya, and Y. Gogotsi (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098.

    Article  CAS  Google Scholar 

  72. B. Mendoza-Sánchez and Y. Gogotsi (2016). Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 28, 6104–6135.

    Article  PubMed  Google Scholar 

  73. N. A. Zubair, N. A. Rahman, H. N. Lim, R. M. Zawawi, and Y. Sulaiman (2016). Electrochemical properties of PVA–GO/ PEDOT nanofibers prepared using electrospinning and electropolymerization techniques. RSC Adv. 6 (21), 17720–17727.

    Article  CAS  Google Scholar 

  74. D. Yang, B. Zhou, G. Han, Y. Feng, J. Ma, J. Han, C. Liu, and C. Shen (2021). Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion perfor-mance. ACS Appl. Mater. Interfaces 13, 7.

    Google Scholar 

  75. Y. Lei, et al. (2020). Synthesis of porous N-rich carbon/MXene from MXene@polypyrrole Hybrid nanosheets as oxygen reduction reaction electrocatalysts. J. Electrochem. Soc. 167, 116503.

    Article  CAS  Google Scholar 

  76. Z. Li and Y. Wu (2019). 2D early transition metal carbides (MXenes) for catalysis. Small 15, e1804736.

    Article  PubMed  Google Scholar 

  77. X. Chen, Y. Zhao, L. Li, Y. Wang, J. Wang, J. Xiong, S. Du, P. Zhang, X. Shi, and J. Yu (2020). MXene/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 61, 1–36.

    CAS  Google Scholar 

  78. N. R. Hemanth and B. Kandasubramanian (2020). Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J. 392, 123678.

    Article  CAS  Google Scholar 

  79. R. Garg, A. Agarwal, and M. Agarwal (2020). A review on MXene for energy storage application: effect of interlayer distance. Mater. Res. Express 7, 022001.

    Article  CAS  Google Scholar 

  80. B.-M. Jun, S. Kim, J. Heo, C. M. Park, N. Her, M. Jang, Y. Huang, J. Han, and Y. Yoon (2019). Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 12, 471–487.

    Article  CAS  Google Scholar 

  81. L. Gao, C. Li, W. Huang, S. Mei, H. Lin, Q. Ou, Y. Zhang, J. Guo, F. Zhang, S. Xu, et al. (2020). MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703–1747.

    Article  CAS  Google Scholar 

  82. J. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. Liu, and M. H. Rummeli (2019). Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133.

    Article  CAS  PubMed  Google Scholar 

  83. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253.

    Article  CAS  PubMed  Google Scholar 

  84. N. S. Shaikh, S. B. Ubale, V. J. Mane, J. S. Shaikh, V. C. Lokhande, S. Praserthdam, C. D. Lokhande, and P. Kanjanaboos (2022). Novel electrodes for supercapacitor: conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J. Alloys Comps. 893, 161998.

    Article  CAS  Google Scholar 

  85. X. Zheng, P. Wang, X. Zhang, H. Qiaole, Z. Wang, W. Nie, L. Zou, C. Li, and X. Han (2022). Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy. Compos. Part A Appl. Sci. and Manuf. 152, 106700.

    Article  CAS  Google Scholar 

  86. J. I. Jing, C. H. Xing, N. I. Yi, H. E. Xin-rui, H. U. Ya-lin, and W. A. Chao (2022). Advances in flexible sensor with MXene materials. 新型炭材料. 37 (2), 1–9.

    Google Scholar 

  87. W. Liang and I. Zhitomirsky (2022). MXene-polypyrrole electrodes for asymmetric supercapacitors. Electrochim. Acta. 4, 139843.

    Article  Google Scholar 

  88. S. Biswas and P. S. Alegaonkar (2022). MXene: evolutions in chemical synthesis and recent advances in applications. Surfaces 5, 1–34.

    Article  CAS  Google Scholar 

  89. K. K. Kazemi, E. Hosseini, S. Hu, R. Narang, S. Li, M. Arjmand, and M. H. Zarifi (2022). MXene membrane in planar microwave resonant structures for 5G applications. Appl. Mater. Today 26, 101294.

    Article  Google Scholar 

  90. J. Yu, H. Chen, H. Huang, M. Zeng, J. Qin, H. Liu, M. Ji, F. Bao, C. Zhu, and J. Xu (2022). Protein-induced decoration of applying MXene directly to UHMWPE fibers and fabrics for improved adhesion properties and electronic textiles. Compos. Sci. Technol. 218, 109158.

    Article  CAS  Google Scholar 

  91. Y. Wei, M. Zheng, W. Luo, B. Dai, J. Ren, M. Ma, T. Li, and Y. Ma (2022). All pseudocapacitive MXene-MnO2 flexible asymmetric supercapacitor. J. Energy Storage 45, 103715.

    Article  Google Scholar 

  92. R. Zhang, J. Dong, W. Zhang, L. Ma, Z. Jiang, J. Wang, and Y. Huang (2022). Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor. Nano Energy 91, 106633.

    Article  CAS  Google Scholar 

  93. J. Zhou, Q. Kang, S. Xu, X. Li, C. Liu, L. Ni, N. Chen, C. Lu, X. Wang, L. Peng, and X. Guo (2022). Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors. Nano Res. 15 (1), 285–295.

    Article  CAS  Google Scholar 

  94. D. Majumdar (2022). Role of MXenes/polyaniline nanocomposites in fabricating innovative supercapacitor technology. Adv. Energy Convers. Mater. 2022, 30–53.

    Google Scholar 

  95. J. Zhang, D. Jiang, L. Liao, L. Cui, R. Zheng, and J. Liu (2022). Ti3C2Tx MXene based hybrid electrodes for wearable supercapacitors with varied deformation capabilities. Chem. Eng. J. 429, 132232.

    Article  CAS  Google Scholar 

  96. J. A. Kumar, P. Prakash, T. Krithiga, D. J. Amarnath, J. Premkumar, N. Rajamohan, Y. Vasseghian, P. Saravanan, and M. Rajasimman (2022). Methods of synthesis, characteristics, and environmental applications of Mxene: a comprehensive review. Chemosphere 1 (286), 131607.

    Article  Google Scholar 

  97. Y. Du, X. Wang, X. Dai, W. Lu, Y. Tang, and J. Kong (2022). Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics. J. Mater. Sci. Technol. 20 (100), 1–1.

    Article  Google Scholar 

  98. T. Najam, S. S. Shah, L. Peng, M. S. Javed, M. Imran, M. Q. Zhao, and P. Tsiakaras (2022). Synthesis and nano-engineering of MXenes for energy conversion and storage applications: recent advances and perspectives. Coord. Chem. Rev. 454, 214339.

    Article  CAS  Google Scholar 

  99. J. Yang, S. Cheng, S. Zhang, W. Han, and B. Jin (2022). Modifying Ti3C2 MXene with NH4+ as an excellent anode material for improving the performance of microbial fuel cells. Chemosphere 288, 132502.

    Article  CAS  PubMed  Google Scholar 

  100. S. K. Hwang, S. J. Patil, N. R. Chodankar, Y. S. Huh, and Y. K. Han (2022). An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chem. Eng. J. 427, 131854.

    Article  CAS  Google Scholar 

  101. J. Huang, X. Huang, and P. Wu (2022). One stone for three birds: one-step engineering highly elastic and conductive hydrogel electronics with multilayer MXene as initiator, crosslinker and conductive filler simultaneously. Chem. Eng. J. 15 (428), 132515.

    Article  Google Scholar 

  102. Y. Wu, W. Zhong, Q. Yang, C. Hao, Q. Li, M. Xu, and S. J. Bao (2022). Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage. Chem. Eng. J. 427, 130960.

    Article  CAS  Google Scholar 

  103. D. Wen, G. Ying, L. Liu, Y. Li, C. Sun, C. Hu, Y. Zhao, Z. Ji, J. Zhang, and X. Wang (2022). Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes. J. Alloys Comps. 15 (900), 163436.

    Article  Google Scholar 

  104. E. Jiao, K. Wu, Y. Liu, H. Zhang, H. Zheng, C. A. Xu, J. Shi, and M. Lu (2022). Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond. J. Mater. Sci. 57, 1–13.

    Article  Google Scholar 

  105. Q. Fan, R. Zhao, M. Yi, P. Qi, C. Chai, H. Ying, and J. Hao (2022). Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chem. Eng. J. 428, 131107.

    Article  CAS  Google Scholar 

  106. L. Qin, Q. Tao, A. El Ghazaly, J. Fernandez-Rodriguez, P. O. Å. Persson, J. Rosen, and F. Zhang (2018). High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo 1.33 C MXene and PEDOT:PSS. Adv. Funct. Mater. 28, 1703808.

    Article  Google Scholar 

  107. J. Liu, X. Jia, Y. Liu, Y. Wuliu, J. Dai, X. Zhu, and X. Liu (2022). A synergetic strategy of well dispersing hydrophilic Ti3C2Tx MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances. Compos. Sci. Technol. 219, 109248.

    Article  CAS  Google Scholar 

  108. P. Das and Z. S. Wu (2020). MXene for energy storage: present status and future perspectives. J. Phys. Energy 2, 032004.

    Article  CAS  Google Scholar 

  109. W. Liu, Y. Zheng, Z. Zhang, Y. Zhang, Y. Wu, H. Gao, J. Su, and Y. Gao (2022). Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. J. Power Sour. 521, 230965.

    Article  CAS  Google Scholar 

  110. Y. Chen, Y. Jiang, W. Feng, W. Wang, and D. Yu (2022). Construction of sensitive strain sensing nanofibrous membrane with polydopamine-modified MXene/CNT dual conductive network. Colloids Surf A 635, 128055.

    Article  CAS  Google Scholar 

  111. X. Li, Y. Ma, Y. Yue, G. Li, C. Zhang, M. Cao, Y. Xiong, J. Zou, Y. Zhou, and Y. Gao (2022). A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chem. Eng. J. 428, 130965.

    Article  CAS  Google Scholar 

  112. L. Zhang, Y. Jiang, L. Zhou, Z. Jiang, L. Li, W. Che, and Y. Yu (2022). Mechanical, thermal stability, and flame retardancy performance of transparent wood composite improved with delaminated Ti3C2Tx (MXene) nanosheets. J. Mater. Sci. 3, 1–2.

    Google Scholar 

  113. U. Alli, K. McCarthy, I. A. Baragau, N. P. Power, D. J. Morgan, S. Dunn, S. Killian, T. Kennedy, and S. Kellici (2022). In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes. Chem. Eng. J. 430, 132976.

    Article  CAS  Google Scholar 

  114. G. Liu, Q. Xiong, Y. Xu, Q. Fang, K. C. Leung, M. Sang, S. Xuan, and L. Hao (2022). Sandwich-structured MXene@Au/polydopamine nanosheets with excellent photothermal-enhancing catalytic activity. Colloids Surf. A 633, 127860.

    Article  CAS  Google Scholar 

  115. G. Liu, Q. Xiong, Y. Xu, Q. Fang, K. C. Leung, M. Sang, S. Xuan, and L. Hao (2022). Sandwich-structured MXene@ Au/polydopamine nanosheets with excellent photothermal-enhancing catalytic activity. Colloids Surf. A. 633, 127860.

    Article  CAS  Google Scholar 

  116. M. N. Taj, B. D. Prasad, R. Narapareddy, H. Nagabhushana, G. Ramakrishna, B. Mahesh, and S. T. Dadami (2022). PANI-molybdate nanocomposites: Structural, morphological and dielectric properties for the effective electromagnetic interference (EMI) shielding applications in X-band. Appl. Surf. Sci. Adv. 7, 100203.

    Article  Google Scholar 

  117. Y. Zhang, Y. Wu, Y. Liu, and J. Feng (2022). Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chem. Eng. J. 428, 131040.

    Article  CAS  Google Scholar 

  118. P. Shinde, A. Patil, S. C. Lee, E. Jung, and S. C. Jun (2022). Two-dimensional MXenes for electrochemical energy storage applications. J. Mater. Chem. A 10, 1105.

    Article  CAS  Google Scholar 

  119. J. Rajendran, T. S. Kannan, L. S. Dhanasekaran, P. Murugan, R. Atchudan, Z. A. Alothman, M. Ouladsmane, and A. K. Sundramoorthy (2022). Preparation of 2D graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products. Chemosphere 287, 132106.

    Article  CAS  PubMed  Google Scholar 

  120. W. Liang and I. Zhitomirsky (2021). Composite Fe3O4-MXene-carbon nanotube electrodes for supercapacitors prepared using the new colloidal method. Materials 14, 2930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. T. Dong, W. Xu, M. Jin, J. Wu, T. Mu, J. Ling, and Y. Zhou (2022). A self-assemble strategy toward conductive 2D MXene reinforced ZrO2 composites with sensing performance. J. Eur. Ceram. Soc. 42, 1102–1112.

    Article  CAS  Google Scholar 

  122. J. Wu, Q. Li, C. E. Shuck, K. Maleski, H. N. Alshareef, J. Zhou, Y. Gogotsi, and L. Huang (2022). An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 1, 535–541.

    Article  Google Scholar 

  123. Y. Shi, S. Li, Z. Tian, X. Yang, Y. Dong, Y. Zhu, and Y. Fu (2022). Self-assembled lightweight three-dimensional hierarchically porous Ti3C2Tx MXene@ polyaniline hybrids for superior microwave absorption. J. Alloys Comps. 892, 162194.

    Article  CAS  Google Scholar 

  124. M. Mahmood, S. Zulfiqar, M. F. Warsi, M. Aadil, I. Shakir, S. Haider, P. O. Agboola, and M. Shahid (2022). Nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications. Ceram. Int. 48, 2345–2354.

    Article  CAS  Google Scholar 

  125. X. Li, Y. Tang, L. Liu, Y. Zhang, R. Sheng, and Y. NuLi (2022). Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. J. Colloid Interface Sci. 608, 2455–2462.

    Article  CAS  PubMed  Google Scholar 

  126. S. H. Yang, Y. J. Lee, H. Kang, S. K. Park, and Y. C. Kang (2022). Carbon-coated three-dimensional MXene/iron selenide ball with core–shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14, 1–7.

    Article  Google Scholar 

  127. Z. Wang, D. Cao, M. Ren, H. Zhang, L. Pan, C. J. Zhang, and J. Yang (2022). Si@ Ti3C2Tx with Si nanoparticles embedded in a 3D conductive network of crumpled Ti3C2Tx nanosheets for the anode of lithium-ion batteries with enhanced cycling performance. J. Alloys Compds. 892, 162037.

    Article  CAS  Google Scholar 

  128. A. Pasha, S. Khasim, A. A. Darwish, T. A. Hamdalla, S. A. Al-Ghamdi, and S. Alfadhli (2022). Flexible, stretchable and electrically conductive PDMS decorated with polypyrrole/manganese-iron oxide nanocomposite as a multifunctional material for high performance EMI shielding applications. Synth. Met. 283, 116984.

    Article  CAS  Google Scholar 

  129. Z. Yuan, H. Guo, Y. Huang, W. Li, Y. Liu, K. Chen, M. Yue, and Y. Wang (2022). Composites of NiSe2@ C hollow nanospheres wrapped with Ti3C2Tx MXene for synergistic enhanced sodium storage. Chem. Eng. J. 429, 132394.

    Article  CAS  Google Scholar 

  130. Y. Yang, J. Chen, Q. Gao, Y. Feng, F. Xing, and M. Yao (2022). First-principle study on catalytic activity of functionalized Ti3C2 MXene as cathode catalyst for Li–O2 batteries. Curr. Appl. Phys. 34, 24–28.

    Article  Google Scholar 

  131. X. Xu, Y. Zhang, H. Sun, J. Zhou, F. Yang, H. Li, H. Chen, Y. Chen, Z. Liu, Z. Qiu, D. Wang, L. Ma, J. Wang, Q. Zeng, and Z. Peng (2021). Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices. Adv. Electron. Mater. 7, 2000967.

    Article  CAS  Google Scholar 

  132. Z. Z. Zhang and Z. Zhou (2018). MXene-based materials for electrochemical energy storage. J. Energy Chem. 27, 73–85.

    Article  Google Scholar 

  133. J. Nan, X. Guo, J. Xiao, X. Li, W. Chen, W. Wu, H. Liu, Y. Wang, M. Wu, and G. Wang (2019). Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17, 1902085.

    Article  Google Scholar 

  134. A. Tanvir, P. Sobolčiak, A. Popelka, M. Mrlik, Z. Spitalsky, M. Micusik, J. Prokes, and I. Krupa (2019). Electrically conductive, transparent polymeric nanocomposites modified by 2D Ti3C2Tx (MXene). Polymers 11 (8), 1272.

    Article  PubMed  PubMed Central  Google Scholar 

  135. S. He, Z. Qizhen, S. Razium Ali, and X. Bin (2020). MXene derivatives for energy storage applications. Sustain. Energy Fuels 4, 4988–5004.

    Article  CAS  Google Scholar 

  136. K. R. Lim, A. D. Handoko, S. K. Nemani, B. Wyatt, H. Y. Jiang, J. Tang, B. Anasori, and Z. W. Seh (2020). Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14, 10834–10864.

    Article  CAS  PubMed  Google Scholar 

  137. S. P. Sreenilayam, I. U. Ahad, V. Nicolosi, and D. Brabazon (2021). MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater. Today 43, 99–131.

    Article  CAS  Google Scholar 

  138. W. Wu, D. Wei, J. Zhu, D. Niu, F. Wang, et al. (2019). Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram. Int. 45, 7328–7337.

    Article  CAS  Google Scholar 

  139. R. Zou, H. Quan, M. Pan, S. Zhou, D. Chen, and X. Luo (2018). Self-assembled MXene(Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 292, 31–38.

    Article  CAS  Google Scholar 

  140. Y. Dong, S. Guan, X. Zhou, Q. Chang, and G. Jiang (2021). Co-intercalation of CTAB favors the preparation of Ti3C2Tx/PANI composite with improved electrochemical performance. Ionics 27, 2501–2508.

    Article  CAS  Google Scholar 

  141. K. Dong, Z. Yang, J. Chen, D. Shi, and M. Chen (2021). Oxygen vacancy-Fe2O3@polyaniline composites directly grown on carbon cloth as a high stable electrode for symmetric supercapacitors. J. Inorg. Organomet. Polym. Mater. 31, 1–10.

    Article  Google Scholar 

  142. W. Wu, C. Wang, C. Zhao, D. Wei, J. Zhu, and Y. Xu (2020). Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for High-performance symmetric supercapacitors. J. Colloid Interface Sci. 580, 601–613.

    Article  CAS  PubMed  Google Scholar 

  143. A. Dang, T. Li, C. Fang, C. Tang, T. Zhao, X. Chen, C. Xiong, and Q. Zhuang (2019). A novel hierarchically carbon foam templated carbon nanotubes/polyaniline electrode for efficient electrochemical supercapacitor. Fullerenes Nanotubes Carbon Nanostruct. 27, 440–445.

    Article  CAS  Google Scholar 

  144. B. Chen, Q. Song, Z. Zhou, and C. Lu (2021). A novel sandwiched porous MXene/polyaniline nanofibers composite film for high capacitance supercapacitor electrode. Adv. Mater. Interfaces 8, 2002168.

    Article  CAS  Google Scholar 

  145. A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C. A. Carrero, and M. Beidaghi (2018). “Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. 6, 22123–22133.

    Article  CAS  Google Scholar 

  146. J. Zhou, Q. Kang, S. Xu, X. Li, C. Liu, L. Ni, N. Chen, C. Lu, X. Wang, L. Peng, and X. Guo (2021). Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors. Nano Res. 15, 1–11.

    Google Scholar 

  147. Y. Zou, Z. Zhang, W. Zhong, and W. Yang (2018). Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. 6, 9245–9256.

    Article  CAS  Google Scholar 

  148. M. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013).

    Book  Google Scholar 

  149. S. Chen, Y. Xiang, M. K. Banks, C. Peng, W. Xu, and R. Wu (2018). Polyoxometalate-coupled MXene nanohybrid via poly (ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 10, 20043–20052.

    Article  CAS  PubMed  Google Scholar 

  150. X. Zhang, J. Li, J. Li, L. Han, T. Lu, X. Zhang, G. Zhu, and L. Pan (2020). 3-D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 385, 123394.

    Article  CAS  Google Scholar 

  151. M. Mahajan, G. Singla, and S. Ogale (2021). Polypyrrole-encapsulated polyoxomolybdate decorated MXene as a functional 2-D/3-D nanohybrid for a robust and high performance Li-Ion battery. ACS Appl. Energy Mater. 4, 4541–4550.

    Article  CAS  Google Scholar 

  152. Q. Song, Z. Zhan, B. Chen, Z. Zhou, and C. Lu (2020). Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose 27, 7475–7488.

    Article  CAS  Google Scholar 

  153. L. Geng, S. Wang, Y. Zhao, P. Li, S. Zhang, W. Huang, and S. Wu (2006). Study of the primary sensitivity of polypyrrole/r-Fe2O3 to toxic gases. Mater. Chem. Phys. 99, 15–19.

    Article  CAS  Google Scholar 

  154. J. Yan, Y. Ma, C. Zhang, X. Li, W. Liu, X. Yao, S. Yao, and S. Luo (2018). Polypyrrole–MXene coated textile-based flexible energy storage device. RSC Adv. 8, 39742–39748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. K. Maleski, C. E. Ren, M. Q. Zhao, B. Anasori, and Y. Gogotsi (2018). Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10, 24491–24498.

    Article  CAS  PubMed  Google Scholar 

  156. C. Zhang, S. Xu, D. Cai, J. Cao, L. Wang, and W. Han (2020). Planar supercapacitor with high areal capacitance based on MX/Polypyrrole composite film. Electrochim. Acta 330, 135277.

    Article  CAS  Google Scholar 

  157. A. Le, Q. Tran, Y. Hong, and H. Lee (2019). Intertwined titanium carbide MXene within a 3 D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem. Eur. J. 25, 1037.

    CAS  PubMed  Google Scholar 

  158. D. Yang, B. Zhou, G. Han, Y. Feng, J. Ma, J. Han, C. Liu, and C. Shen (2021). Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance. ACS Appl. Mater. Interfaces 13, 7.

    Google Scholar 

  159. J. Zhao, J. Wu, B. Li, W. Du, Q. Huang, M. Zheng, et al. (2016). Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Prog. Nat. Sci. Mater. Int. 26, 237–242.

    Article  CAS  Google Scholar 

  160. C. W. Lin, B. J. Hwang, and C. R. Lee (1999). Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol) thin film exposed to ethanol vapors. J. Appl. Polym. Sci. 73, 2079–2087.

    Article  CAS  Google Scholar 

  161. M. Varga, J. Kopecká, Z. Morávková, I. Křivka, M. Trchová, J. Stejskal, and J. Prokeš (2015). Effect of oxidant on electronic transport in polypyrrole nanotubes synthesized in the presence of methyl orange. J. Polym. Sci. Part B Polym. Phys. 53, 1147–1159.

    Article  CAS  Google Scholar 

  162. M. Parit, H. Du, X. Zhang, C. Prather, M. Adams, and Z. Jiang (2020). Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym. 240, 116304.

    Article  CAS  PubMed  Google Scholar 

  163. S. Zhou, C. Gu, Z. Li, L. Yang, L. He, M. Wang, and Z. Zhang (2019). Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 498, 143889.

    Article  CAS  Google Scholar 

  164. M. Rana, B. Luo, M. R. Kaiser, I. Gentle, and R. Knibbe (2020). The role of functional materials to produce high areal capacity lithium sulfur battery. J. Energy Chem. 42, 195–209.

    Article  Google Scholar 

  165. J. Wang, et al. (2019). Rational design of porous N-Ti3C2MXene@CNT microspheres for high cycling stability in Li–S battery. Nanomicro. Lett. 12, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  166. N. Li, Y. Xie, S. Peng, X. Xiong, and K. Han (2020). Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: thicknessregulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125.

    Article  CAS  Google Scholar 

  167. Y. Daozheng, Z. Bing, H. Gaojie, F. Yuezhan, M. Jianmin, H. Jian, L. Chuntai, and S. Changyu (2021). Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance. ACS Appl. Mater. Interfaces 13 (7), 8909–8918.

    Article  Google Scholar 

  168. T. A. Le, N. Q. Tran, Y. Hong, and H. Lee (2019). Intertwined titanium carbide MXene within a 3D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem. Eur. J. 25, 1037–1043. https://doi.org/10.1002/chem.201804291.

    Article  CAS  PubMed  Google Scholar 

  169. S. Zhou, C. Gu, Z. Li, L. Yang, L. He, M. Wang, X. Huang, N. Zhou, and Z. Zhang (2019). Ti3C2Tx MXene and polyoxometalatenano hybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 498, 143889.

    Article  CAS  Google Scholar 

  170. M. Boota, B. Anasori, C. Voigt, M. Q. Zhao, M. W. Barsoum, and Y. Gogotsi (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 17, 1517–1522.

    Article  Google Scholar 

  171. X. Jian, M. He, L. Chen, M.-M. Zhang, R. Li, L.-J. Gao, F. Fu, and Z.-H. Liang (2019). Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochim. Acta 318, 820–827.

    Article  CAS  Google Scholar 

  172. B. Tseghai, D. A. Mengistie, B. Malengier, K. A. Fante, and L. Langenhove (1881). PEDOT:PSS-based conductive textiles and their applications. Sensors 2020, 20.

    Google Scholar 

  173. L. Li, N. Zhang, M. Zhang, X. Zhang, and Z. Zhang (2019). Flexible Ti3C2Tx/PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton Trans. 48, 1747–1756.

    Article  CAS  PubMed  Google Scholar 

  174. D. Park, M. Kim, and J. Kim (2021). Conductive PEDOT:PSS-based organic/inorganic flexible thermoelectric films and power generators. Polymers 13 (2), 210. https://doi.org/10.3390/polym13020210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. R. Zeng, W. Wang, M. Chen, Q. Wan, C. Wang, D. Knopp, and D. Tang (2021). CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy 82, 105711.

    Article  CAS  Google Scholar 

  176. Z. Li, L. Zhao, X. Zheng, P. Lin, X. Li, R. Li, D. Han, S. Zhao, D. Lv, L. Wang, and X. Wang (2022). Continuous PEDOT: PSS nanomesh film: Towards aqueous AC line filtering capacitor with ultrahigh energy density. Chem. Eng. J. 430, 133012.

    Article  CAS  Google Scholar 

  177. C. Hou and H. Yu (2020). Modifying the nanostructures of PEDOT:PSS/Ti3C2TX composite hole transport layers for highly efficient polymer solar cells. J. Mater. Chem. C 8, 4169–4180.

    Article  CAS  Google Scholar 

  178. X. Wang, K. Sun, K. Li, X. Li, and Y. Gogotsi (2020). Ti3C2Tx/PEDOT:PSS hybrid materials for room-temperature methanol sensor. Chin. Chem. Lett. 31, 1018–1021.

    Article  CAS  Google Scholar 

  179. R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, and X. Feng (2018). Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795.

    Article  CAS  PubMed  Google Scholar 

  180. L. Li, N. Zhang, M. Zhang, X. Zhang, and Z. Zhang (2019). Flexible Ti3C2Tx /PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton Trans. 48, 1747–1756.

    Article  CAS  PubMed  Google Scholar 

  181. T. Hu, J. Yang, W. Li, X. Wang, and C. M. Li (2020). Quantifying the rigidity of 2D car-bides (MXenes). Phys. Chem. Chem. Phys. 22, 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  182. Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum, and Y. Gogotsi (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111, 16676–16681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. W. Wu, D. Niu, J. Zhu, Y. Gao, D. Wei, X. Liu, F. Wang, L. Wang, and L. Yang (2019). “Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors. J. Electroanal. Chem. 847, 113203.

    Article  CAS  Google Scholar 

  184. W. Zhou, W. Kuang, X. Liang, W. Zhou, J. Guo, L. Gan, and D. Huang (2020). Exploration of MXene/polyaniline composites as promising anode materials for sodium ion batteries. J. Phys. D Appl. Phys. 54, 064001.

    Article  Google Scholar 

  185. J. Fu, J. Yun, S. Wu, L. Li, L. Yu, and K. H. Kim (2018). Architecturally robust graphene-encapsulated MXene Ti2CTx@Polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 40, 34212–34221.

    Article  Google Scholar 

  186. Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao, Y. Liu, and G. Yuan (2021). “Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 405, 126664.

    Article  CAS  Google Scholar 

  187. Q. Song, Z. Zhan, B. Chen, Z. Zhou, and C. Lu (2020). Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose 27, 1–14.

    Article  Google Scholar 

  188. L. Yang, F. Lin, F. Zabihi, S. Yang, and M. Zhu (2021). High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization. Int. J. Biol. Macromol. 181, 1063–1071.

    Article  CAS  PubMed  Google Scholar 

  189. T. Arjun Prasad, C. Kisan, K. Hyoju, J. Seongmin, C. Su-Hyeong, K. Taewoo, and K. Hak Yong (2021). Self-assembled polypyrrole hierarchical porous networks as the cathode and porous three dimensional carbonaceous networks as the anode materials for asymmetric supercapacitor. J. Energy Storage 33, 102080.

    Article  Google Scholar 

  190. S. Gund, J. H. Park, R. Harpalsinh, M. Kota, J. H. Shin, T.-I. Kim, Y. Gogotsi, and H. S. Park (2019). MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 3, 164–176.

    Article  CAS  Google Scholar 

  191. C. I. Idumah, I. C. Nwuzor, and R. S. Odera (2021). Recent advances in polymer hydrogel nanoarchitectures and applications. Curr Res Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2021.100143.

    Article  Google Scholar 

  192. C. I. Idumah, A. Ezika, and V. Okpechi (2021). Emerging trends in polymer aerogel nanoarchitectures, surfaces, interfaces and applications. Surf. Interfaces 25, 101258.

    Article  CAS  Google Scholar 

  193. C. I. Idumah (2021). Progress in polymer nanocomposites for bone regeneration and engineering. Polym. Polym. Compos. 29, 509–527.

    CAS  Google Scholar 

  194. C. I. Idumah (2021). Novel trends in self-healable polymer nanocomposites. J. Thermoplast. Compos. Mater. 34, 834–858.

    Article  CAS  Google Scholar 

  195. C. I. Idumah, E. O. Ezeani, and I. C. Nwuzor (2021). A review: advancements in conductive polymers nanocomposites. Polym.-Plast. Technol. Mater. 60, 756–783.

    CAS  Google Scholar 

  196. C. I. Idumah (2021). Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polym. Polym. Compos. 29, 246–258.

    CAS  Google Scholar 

  197. C. I. Idumah (2021). Recent advancements in thermolysis of plastic solid wastes to liquid fuel. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10776-5.

    Article  Google Scholar 

  198. C. I. Idumah, C. M. Obele, and U. E. Enwerem (2021). On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications. Curr. Res. Green Sustain. Chem. 4, 100104.

    Article  CAS  Google Scholar 

  199. C. I. Idumah (2021). Novel trends in polymer aerogel nanocomposites. Polym.-Plast. Technol. Mater. 60, 1–13.

    Google Scholar 

  200. I. C. Nwuzor, C. I. Idumah, S. C. Nwanonenyi, and O. E. Ezeani (2021). Emerging trends in self-polishing anti-fouling coatings for marine environment. Saf. Extreme Environ. 3, 9–25.

    Article  Google Scholar 

  201. C. I. Idumah (2021). Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synth. Met. 273, 116674.

    Article  CAS  Google Scholar 

  202. C. I. Idumah, J. Ogbu, J. Ndem, and V. Obiana (2019). Influence of chemical modification of kenaf fiber on xGNP-PP- nano-biocomposites. SN Appl. Sci. 1, 1261.

    Article  Google Scholar 

  203. C. I. Idumah, A. Hassan, and A. Affam (2015). A review of recent developments in flammability of polymer nanocomposites. Rev. Chem. Eng. 31, 149–177.

    Article  CAS  Google Scholar 

  204. C. Idumah and A. Hassan (2016). Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth. Met. 212, 91–104.

    Article  CAS  Google Scholar 

  205. C. Idumah and A. Hassan (2016). Recently emerging trends in thermal conductivity of polymer nanocomposites. Rev. Chem. Eng. 32, 413–457.

    Google Scholar 

  206. C. Idumah and A. Hassan (2015). Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev. Chem. Eng. 32, 115–148.

    Google Scholar 

  207. C. Idumah and A. Hassan (2016). Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev. Chem. Eng. 32, 223–226.

    CAS  Google Scholar 

  208. C. Idumah and A. Hassan (2016). Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J. Polym. Eng. 36, 877–889.

    Article  CAS  Google Scholar 

  209. C. Idumah and A. Hassan (2016). Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites. Rev. Chem. Eng. 32, 305–361.

    CAS  Google Scholar 

  210. C. Idumah, A. Hassan, and S. Bourbigot (2017). Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J. Anal. Appl. Pyrol. 123, 65–72.

    Article  CAS  Google Scholar 

  211. C. Idumah and A. Hassan (2017). Hibiscus cannabinus fiber/PP based nano-biocomposites reinforced with graphene nanoplatelets. J. Nat. Fibers 14, 691–706.

    Article  CAS  Google Scholar 

  212. C. Idumah, A. Hassan, J. Ogbu, J. Ndem, and I. Nwuzor (2018). Recently emerging advancements in halloysite nanotubes polymer nanocomposites. Compos. Interface 26, 751–824.

    Article  Google Scholar 

  213. C. Idumah, A. Hassan, and S. Bourbigot (2018). Synergistic effect of exfoliated graphene nanoplatelets and non-halogen flame retardants on flame retardancy and thermal properties of kenaf flour-PP nanocomposites. J. Therm. Anal. Calorim. 134, 1681–1703.

    Article  CAS  Google Scholar 

  214. C. Idumah, A. Hassan, and D. Ihuoma (2019). Recently emerging trends in polymer nanocomposites packaging materials. Polym.-Plast. Technol. Eng. 58, 1054–1109.

    CAS  Google Scholar 

  215. C. I. Idumah, A. Hassan, J. E. Ogbu, J. Ndem, W. Oti, and V. Obiana (2020). Electrical, thermal and flammability properties of conductive filler kenaf–reinforced polymer nanocomposites. J. Therm. Compos. Mater. 33, 516–540.

    Article  CAS  Google Scholar 

  216. C. I. Idumah and C. M. Obere (2021). Understanding interfacial influence on properties of polymer nanocomposites. Surf. Interfaces 22, 100879.

    Article  CAS  Google Scholar 

  217. C. I. Idumah, M. C. Obele, and E. O. Ezeani (2021). Understanding interfacial dispersions in ecobenign polymer nano-biocomposites. Polym.-Plast. Technol. Mater. 60, 233–252.

    CAS  Google Scholar 

  218. C. I. Idumah, C. M. Obele, E. O. Ezeani, and A. Hassan (2020). Recently emerging nanotechnological advancements in polymer nanocomposite coatings for anti-corrosion, anti-fouling and self-healing. Surf. Interfaces 21, 100734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. C. I. Idumah (2019). Novel trends in selfhealable polymer nanocomposites. J. Thermoplast. Compos. Mater. 34, 0892705719847247.

    Google Scholar 

  220. C. I. Idumah, M. Zurina, A. Hassan, O. Norhayani, and I. Shuhadah, Recently emerging trends in bone replacement polymer nanocomposites, in S. K. Swain and M. Jawaid (eds.), Nanostructured Polymer Composites for Biomedical Applications (Elsevier, Amsterdam, 2019), pp. 139–166.

    Chapter  Google Scholar 

  221. C. I. Idumah (2020). Advancements in conducting polymer bionanocomposites, and hydrogels for biomedical applications. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2020.1857384.

    Article  Google Scholar 

  222. C. I. Idumah (2020). Influence of NT in polymeric textiles, applications, and fight against COVID-19. J Textile Inst. https://doi.org/10.1080/00405000.2020.1858600.

    Article  Google Scholar 

  223. C. I. Idumah and N. Iheoma (2019). Novel trends in plastic wastes management. SN Appl. Sci. 1, 1402.

    Article  Google Scholar 

  224. C. I. Idumah, J. T. Nwabanne, and F. A. Tanjung (2021). Novel trends in poly (lactic) acid hybrid bionanocomposites. Clean. Mater. 2, 100022.

    Article  Google Scholar 

  225. C. I. Idumah, E. O. Ezeani, A. C. Ezika, and U. T. Timothy (2021). Recent advancements in flame retardancy of MXene polymer nanoarchitectures. Saf. Extreme Environ. 3, 1–21.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges vision-200 of Prof. Charles Esimone, Vice Chancellor, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.

Funding

No funding is reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Igwe Idumah.

Ethics declarations

Conflict of interest

Author acknowledges no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idumah, C.I., Ezeani, O.E., Okonkwo, U.C. et al. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J Clust Sci 34, 45–76 (2023). https://doi.org/10.1007/s10876-022-02243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02243-4

Keywords

Navigation