Skip to main content

Advertisement

Log in

Senolytic Effect of Cerium Oxide Nanoparticles (CeO2 NPs) by Attenuating p38/NF-кB, and p53/p21 Signaling Pathways

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Oxidative stress induces cell senescence and aging. Cell senescence is an irreversible cell cycle arrest mechanism responsible for various pathological diseases and aging. Cerium oxide nanoparticles (CeO2 NPs) have been found to have anti-oxidant effects with a capacity to scavenge free radicals. With this background, we aimed to investigate the senolytic property of CeO2 NPs on mouse embryonic fibroblasts (NIH3T3). NIH3T3 cells were exposed to CeO2 NPs with or without hydrogen peroxide (H2O2). The senolytic effect of CeO2 NPs was evaluated by measuring reactive oxygen species (ROS) production, lipid peroxidation (LPO), β-galactosidase, cell cycle phase analysis, and expression of p21, p38, p53, and NF-кB genes. EC50 of CeO2 NPs significantly reduced the β-galactosidase activity in NIH3T3 cells without apparent cytotoxicity and generation of ROS. Also, it decreased LPO, and expression of IL-6. The number of cells increased significantly, indicating that CeO2 NPs can reverse cell senescence and cell cycle arrest in the S phase. Also, p21, p38, p53, and NF-кB gene expressions were significantly down-regulated. CeO2 NPs as a senolytic or inhibitor of senescence can attenuate the senescence-inducing signal transduction pathways, i.e., p38/ NF-кB and p53/p21. It reduced the production of ROS and LPO and the expression of IL-6.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Khosla, J. N. Farr, T. Tchkonia, and J. L. Kirkland (2020). The role of cellular senescence in ageing and endocrine disease. Nature Reviews Endocrinology. 16 (5), 263–275.

    Article  CAS  PubMed  Google Scholar 

  2. J. M. van Deursen (2014). The role of senescent cells in ageing. Nature. 509 (7501), 439–446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. B. Bernardes de Jesus and M. A. Blasco (2012). Assessing cell and organ senescence biomarkers. Circ Res. 111 (1), 97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Yosef, N. Pilpel, N. Papismadov, H. Gal, Y. Ovadya, E. Vadai, et al. (2017). p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J. 36 (15), 2280–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Rufini, P. Tucci, I. Celardo, and G. Melino (2013). Senescence and aging: the critical roles of p53. Oncogene. 32 (43), 5129–5143.

    Article  CAS  PubMed  Google Scholar 

  6. M. Mijit, V. Caracciolo, A. Melillo, F. Amicarelli, and A. Giordano (2020). Role of p53 in the regulation of cellular senescence. Biomolecules. 10 (3), 420.

    Article  CAS  PubMed Central  Google Scholar 

  7. Y. Qian and X. Chen (2013). Senescence regulation by the p53 protein family. Methods Mol Biol. 965, 37–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. N. Krementsov, T. M. Thornton, C. Teuscher, and M. Rincon (2013). The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol. 33 (19), 3728–3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. T. Davis, A. J. C. Brook, M. J. Rokicki, M. C. Bagley, and D. Kipling (2016). Evaluating the role of p38 MAPK in the accelerated cell senescence of Werner syndrome fibroblasts. Pharmaceuticals (Basel). 9 (2), 23.

    Article  PubMed Central  CAS  Google Scholar 

  10. J. Han and P. Sun (2007). The pathways to tumor suppression via route p38. Trends in Biochemical Sciences. 32 (8), 364–371.

    Article  CAS  PubMed  Google Scholar 

  11. A. Cuadrado and A. R. Nebreda (2010). Mechanisms and functions of p38 MAPK signalling. The Biochemical Journal. 429 (3), 403–417.

    Article  CAS  PubMed  Google Scholar 

  12. X. Chen, W. Zhang, Y. F. Gao, X. Q. Su, and Z. H. Zhai (2002). Senescence-like changes induced by expression of p21Waf1/Cip1 in NIH3T3 cell line. Cell Research. 12 (3), 229–233.

    Article  PubMed  Google Scholar 

  13. J. S. Tilstra, A. R. Robinson, J. Wang, S. Q. Gregg, C. L. Clauson, D. P. Reay, et al. (2012). NF-κB inhibition delays DNA damage–induced senescence and aging in mice. The Journal of Clinical Investigation. 122 (7), 2601–2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Vaughan and P. S. Jat (2011). Deciphering the role of nuclear factor-κB in cellular senescence. Aging (Albany NY). 3 (10), 913–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Rolt, A. Nair, and L. S. Cox (2019). Optimisation of a screening platform for determining IL-6 inflammatory signalling in the senescence-associated secretory phenotype (SASP). Biogerontology. 20 (3), 359–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Kojima, T. Inoue, H. Kunimoto, and K. Nakajima (2013). IL-6-STAT3 signaling and premature senescence. JAKSTAT. 2 (4), e25763.

    PubMed  PubMed Central  Google Scholar 

  17. C. R. Gomez, J. Karavitis, J. L. Palmer, D. E. Faunce, L. Ramirez, V. Nomellini, et al. (2010). Interleukin-6 contributes to age-related alteration of cytokine production by macrophages. Mediators of Inflammation. 2010, 475139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. I. M. Rea, D. S. Gibson, V. McGilligan, S. E. McNerlan, H. D. Alexander, and O. A. Ross (2018). Age and Age-related diseases: role of inflammation triggers and cytokines. Frontiers in Immunology. 9, 586.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. W. Li, L. Qin, R. Feng, G. Hu, H. Sun, Y. He, et al. (2019). Emerging senolytic agents derived from natural products. Mechanisms of Ageing and Development. 181, 1–6.

    Article  CAS  PubMed  Google Scholar 

  20. K. L. Heckman, A. Y. Estevez, W. DeCoteau, S. Vangellow, S. Ribeiro, J. Chiarenzelli, et al. (2020). Variable in vivo and in vitro biological effects of cerium oxide nanoparticle formulations. Frontiers in Pharmacology. 10, 1599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Y. Li, X. Hou, C. Yang, Y. Pang, X. Li, G. Jiang, et al. (2019). Photoprotection of cerium oxide nanoparticles against UVA radiation-induced senescence of human skin fibroblasts due to their antioxidant properties. Scientific Reports. 9 (1), 2595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. G. Casals, M. Perramón, E. Casals, I. Portolés, G. Fernández-Varo, M. Morales-Ruiz, et al. (2021). Cerium oxide nanoparticles: a new therapeutic tool in liver diseases. Antioxidants (Basel). 10 (5), 660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Mittal and A. K. Pandey (2014). Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int. 2014, 891934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. M. Rahimifard, M. Baeeri, H. Bahadar, S. Moini-Nodeh, M. Khalid, H. Haghi-Aminjan, et al. (2020). Therapeutic effects of gallic acid in regulating senescence and diabetes; an in vitro study. Molecules (Basel, Switzerland). 25, 5875.

    Article  CAS  PubMed Central  Google Scholar 

  25. M. M. Bradford (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  26. S. M. Nejad, M. Hodjat, S. A. Mousavi, M. Baeeri, M. A. Rezvanfar, M. Rahimifard, et al. (2020). Alteration of gene expression profile in mouse embryonic stem cells and neural differentiation deficits by ethephon. Human & Experimental Toxicology. 39 (11), 1518–1527.

    Article  CAS  Google Scholar 

  27. S. Das, J. Das, A. Samadder, N. Boujedaini, and A. R. Khuda-Bukhsh (2012). Apigenin-induced apoptosis in A375 and A549 cells through selective action and dysfunction of mitochondria. Experimental Biology and Medicine (Maywood, NJ). 237 (12), 1433–1448.

    Article  CAS  Google Scholar 

  28. N. Sadeghiyan Galeshkalami, M. Abdollahi, R. Najafi, M. Baeeri, A. Jamshidzade, R. Falak, et al. (2019). Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sciences. 216, 101–110.

    Article  CAS  PubMed  Google Scholar 

  29. M. Baeeri, M. Rahimifard, S. M. Daghighi, F. Khan, S. A. Salami, S. Moini-Nodeh, et al. (2020). Cannabinoids as anti-ROS in aged pancreatic islet cells. Life Sciences. 256, 117969.

    Article  CAS  PubMed  Google Scholar 

  30. B. A. Rzigalinski, C. S. Carfagna, and M. Ehrich (2017). Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology. 9, 4.

    Article  CAS  Google Scholar 

  31. S. Z. Nassar, P. S. Hassaan, D. A. Abdelmonsif, and S. N. ElAchy (2018). Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension: a possible implication of endothelin-1. Life Sciences. 201, 89–101.

    Article  CAS  PubMed  Google Scholar 

  32. D. Oró, T. Yudina, G. Fernández-Varo, E. Casals, V. Reichenbach, G. Casals, et al. (2016). Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis. Journal of Hepatology. 64 (3), 691–698.

    Article  PubMed  CAS  Google Scholar 

  33. S. Naz, J. Beach, B. Heckert, T. Tummala, O. Pashchenko, T. Banerjee, et al. (2017). Cerium oxide nanoparticles: a ‘radical’ approach to neurodegenerative disease treatment. Nanomedicine (London, England). 12 (5), 545–553.

    Article  CAS  Google Scholar 

  34. D. Zhou, T. Fang, L. Q. Lu, and L. Yi (2016). Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. Journal of Huazhong University of Science and Technology Medical Sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 36 (4), 480–486.

    Article  CAS  Google Scholar 

  35. M. Najafi, K. Mortezaee, M. Rahimifard, B. Farhood, and H. Haghi-Aminjan (2020). The role of curcumin/curcuminoids during gastric cancer chemotherapy: a systematic review of non-clinical study. Life Sciences. 257, 118051.

    Article  CAS  PubMed  Google Scholar 

  36. M. Samadi, H. Haghi-Aminjan, M. Sattari, M. R. Hooshangi Shayesteh, B. Bameri, M. Armandeh, et al. (2021). The role of taurine on chemotherapy-induced cardiotoxicity: a systematic review of non-clinical study. Life Sciences. 265, 118813.

    Article  CAS  PubMed  Google Scholar 

  37. N. Nobakht-Haghighi, M. Rahimifard, M. Baeeri, M. A. Rezvanfar, S. Moini Nodeh, H. Haghi-Aminjan, et al. (2018). Regulation of aging and oxidative stress pathways in aged pancreatic islets using alpha-lipoic acid. Molecular and Cellular Biochemistry. 449 (1–2), 267–276.

    Article  CAS  PubMed  Google Scholar 

  38. M. Armandeh, B. Bameri, M. Baeeri, H. Haghi-Aminjan, M. Rahimifard, S. Hassani, et al. (2021). The role of levosimendan in phosphine-induced cardiotoxicity: evaluation of electrocardiographic, echocardiographic, and biochemical parameters. Toxicology Mechanisms and Methods. https://doi.org/10.1080/15376516.2021.1950248.

    Article  PubMed  Google Scholar 

  39. H. Haghi-Aminjan, M. Baeeri, M. Rahimifard, A. Alizadeh, M. Hodjat, S. Hassani, et al. (2018). The role of minocycline in alleviating aluminum phosphide-induced cardiac hemodynamic and renal toxicity. Environmental Toxicology and Pharmacology. 64, 26–40.

    Article  CAS  PubMed  Google Scholar 

  40. K. Saravanakumar, A. Sathiyaseelan, A. V. A. Mariadoss, and M.-H. Wang (2021). Antioxidant and antidiabetic properties of biocompatible ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells. Ceramics International. 47 (6), 8618–8626.

    Article  CAS  Google Scholar 

  41. M. Alaraby, A. Hernández, B. Annangi, E. Demir, J. Bach, L. Rubio, et al. (2015). Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology. 9 (6), 749–759.

    Article  CAS  PubMed  Google Scholar 

  42. L. T. N. Ngoc, V. K. H. Bui, J. Y. Moon, and Y. C. Lee (2019). In-vitro cytotoxicity and oxidative stress induced by cerium aminoclay and cerium oxide nanoparticles in human skin keratinocyte cells. Journal of Nanoscience and Nanotechnology. 19 (10), 6369–6375.

    Article  CAS  PubMed  Google Scholar 

  43. R. Singh, A. S. Karakoti, W. Self, S. Seal, and S. Singh (2016). Redox-sensitive cerium oxide nanoparticles protect human keratinocytes from oxidative stress induced by glutathione depletion. Langmuir: The ACS Journal of Surfaces and Colloids. 32 (46), 12202–12211.

    Article  CAS  Google Scholar 

  44. H. Ghaznavi, R. Najafi, S. Mehrzadi, A. Hosseini, N. Tekyemaroof, A. Shakeri-Zadeh, et al. (2015). Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurological Research. 37 (7), 624–632.

    Article  CAS  PubMed  Google Scholar 

  45. A. Azari, M. Shokrzadeh, E. Zamani, N. Amani, and F. Shaki (2019). Cerium oxide nanoparticles protects against acrylamide induced toxicity in HepG2 cells through modulation of oxidative stress. Drug and Chemical Toxicology. 42 (1), 54–59.

    Article  CAS  PubMed  Google Scholar 

  46. K. Li, Y. Xie, M. You, L. Huang, and X. Zheng (2016). Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability. Journal of Materials Science Materials in Medicine. 27 (6), 100.

    Article  CAS  PubMed  Google Scholar 

  47. O. A. Adebayo, O. Akinloye, and O. A. Adaramoye (2020). Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of diethylnitrosamine-treated mice. Biological Trace Element Research. 193 (1), 214–225.

    Article  CAS  PubMed  Google Scholar 

  48. M. Sheikhalipour, B. Esmaielpour, G. Gohari, M. Haghighi, H. Jafari, H. Farhadi, et al. (2021). Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules (Basel, Switzerland). 26 (13), 4090.

    Article  CAS  PubMed Central  Google Scholar 

  49. S. Momtaz, M. Baeeri, M. Rahimifard, H. Haghi-Aminjan, S. Hassani, and M. Abdollahi (2019). Manipulation of molecular pathways and senescence hallmarks by natural compounds in fibroblast cells. Journal of Cellular Biochemistry. 120 (4), 6209–6222.

    Article  CAS  PubMed  Google Scholar 

  50. R. Di Micco, V. Krizhanovsky, D. Baker, and F. d’Adda di Fagagna (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology. 22 (2), 75–95.

    Article  PubMed  CAS  Google Scholar 

  51. R. G. Faragher, A. McArdle, A. Willows, and E. L. Ostler (2017). Senescence in the aging process. F1000Research. 6, 1219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. B. B. McConnell, M. Starborg, S. Brookes, and G. Peters (1998). Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Current Biology. 8 (6), 351–354.

    Article  CAS  PubMed  Google Scholar 

  53. D. Wu and C. Prives (2018). Relevance of the p53-MDM2 axis to aging. Cell Death and Differentiation. 25 (1), 169–179.

    Article  CAS  PubMed  Google Scholar 

  54. Y. Haupt, A. I. Robles, C. Prives, and V. Rotter (2002). Deconstruction of p53 functions and regulation. Oncogene. 21 (54), 8223–8231.

    Article  CAS  PubMed  Google Scholar 

  55. F. Lanigan, J. G. Geraghty, and A. P. Bracken (2011). Transcriptional regulation of cellular senescence. Oncogene. 30 (26), 2901–2911.

    Article  CAS  PubMed  Google Scholar 

  56. B.-D. Chang, K. Watanabe, E. V. Broude, J. Fang, J. C. Poole, T. V. Kalinichenko, et al. (2000). Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proceedings of the National Academy of Sciences. 97 (8), 4291–4296.

    Article  CAS  Google Scholar 

  57. U. Herbig, W. Wei, A. Dutriaux, W. A. Jobling, and J. M. Sedivy (2003). Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence. Aging Cell. 2 (6), 295–304.

    Article  CAS  PubMed  Google Scholar 

  58. J. Brugarolas, C. Chandrasekaran, J. I. Gordon, D. Beach, T. Jacks, and G. J. Hannon (1995). Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 377 (6549), 552–557.

    Article  CAS  PubMed  Google Scholar 

  59. X. D. Wang, E. Lapi, A. Sullivan, I. Ratnayaka, R. Goldin, R. Hay, et al. (2011). SUMO-modified nuclear cyclin D1 bypasses Ras-induced senescence. Cell Death & Differentiation. 18 (2), 304–314.

    Article  CAS  Google Scholar 

  60. V. Dulić, L. F. Drullinger, E. Lees, S. I. Reed, and G. H. Stein (1993). Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. Proceedings of the National Academy of Sciences of the United States of America. 90 (23), 11034–11038.

    Article  PubMed  PubMed Central  Google Scholar 

  61. V. Dulić, L. F. Drullinger, E. Lees, S. I. Reed, and G. H. Stein (1993). Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. Proceedings of the National Academy of Sciences. 90 (23), 11034–11038.

    Article  Google Scholar 

  62. M. Mozaffar, M. A. Shahrbaf, B. Azimi, and A. Arabzadeh (2019). Management of celiac trunk and superior mesenteric artery synchronous aneurysms as an extremely rare manifestation of Wegener granulomatosis. Journal of Vascular Surgery Cases and Innovative Techniques. 5 (4), 525–528.

    Article  PubMed  PubMed Central  Google Scholar 

  63. M. Hodjat, M. Baeeri, M. A. Rezvanfar, M. Rahimifard, M. Gholami, and M. Abdollahi (2017). On the mechanism of genotoxicity of ethephon on embryonic fibroblast cells. Toxicology Mechanisms and Methods. 27 (3), 173–180.

    Article  CAS  PubMed  Google Scholar 

  64. D. Laveti, M. Kumar, R. Hemalatha, R. Sistla, V. G. Naidu, V. Talla, et al. (2013). Anti-inflammatory treatments for chronic diseases: a review. Inflammation & Allergy Drug Targets. 12 (5), 349–361.

    Article  CAS  PubMed  Google Scholar 

  65. J. L. Ren, J. S. Pan, Y. P. Lu, P. Sun, and J. Han (2009). Inflammatory signaling and cellular senescence. Cellular Signalling. 21 (3), 378–383.

    Article  CAS  PubMed  Google Scholar 

  66. T. Zarubin and J. Han (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15 (1), 11–18.

    Article  CAS  PubMed  Google Scholar 

  67. H. Iwasa, J. Han, and F. Ishikawa (2003). Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes to Cells: Devoted to Molecular & Cellular Mechanisms. 8 (2), 131–144.

    Article  CAS  Google Scholar 

  68. M. A. Stevenson, S. S. Pollock, C. N. Coleman, and S. K. Calderwood (1994). X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Research. 54 (1), 12–15.

    CAS  PubMed  Google Scholar 

  69. J. Papaconstantinou (2019). The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells. 8 (11), 1383.

    Article  CAS  PubMed Central  Google Scholar 

  70. E. Rovillain, L. Mansfield, C. Caetano, M. Alvarez-Fernandez, O. L. Caballero, R. H. Medema, et al. (2011). Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene. 30 (20), 2356–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A. Salminen, A. Kauppinen, and K. Kaarniranta (2012). Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cellular Signalling. 24 (4), 835–845.

    Article  CAS  PubMed  Google Scholar 

  72. R. NilamberLal Das, S. Muruhan, R. P. Nagarajan, and A. Balupillai (2019). Naringin prevents ultraviolet-B radiation-induced oxidative damage and inflammation through activation of peroxisome proliferator-activated receptor γ in mouse embryonic fibroblast (NIH-3T3) cells. Journal of Biochemical and Molecular Toxicology. 33 (3), e22263.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by Elite Researcher Grant Committee under Award Number 977125 from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran. Authors wish to thank Iran National Science Foundation (INSF) for general seat award support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdollahi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All experiments were conducted per permission from the National Institute for Medical Research Development (NIMAD), Tehran, Iran, and were done according to the ethical approval number: IR.NIMAD.REC.1397.427.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghi-Aminjan, H., Baeeri, M., Khalid, M. et al. Senolytic Effect of Cerium Oxide Nanoparticles (CeO2 NPs) by Attenuating p38/NF-кB, and p53/p21 Signaling Pathways. J Clust Sci 33, 2265–2275 (2022). https://doi.org/10.1007/s10876-021-02152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02152-y

Keywords

Navigation