Skip to main content
Log in

Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

During the previous years, with the emerging of nanotechnology, the enormous capabilities of nanoparticles have drawn great attention from researchers in terms of their potentials in various aspects of pharmacology. Cerium oxide nanoparticles (nanoceria), considered as one of the most widely used nanomaterials, due to its tempting catalytic antioxidant properties, show a promising potential in diverse disorders, such as cerebral ischemic stroke (CIS), cancer, neurodegenerative and inflammatory diseases. Overwhelming generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during cerebral ischemia and reperfusion periods is known to aggravate brain damage via sophisticated cellular and molecular mechanisms, and therefore exploration of the antioxidant capacities of nanoceria becomes a new approach in reducing cerebral ischemic injury. Furthermore, utilizing nanoceria as a drug carrier might display the propensity to overcome limitations or inefficacy of other conceivable neuroprotectants and exhibit synergistic effects. In this review, we emphasize on the principle features of nanoceria and current researches concerning nanoceria as a potential therapeutic agent or carrier in improving the prognosis of CIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Towfighi A, Saver JL. Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke, 2011,42(8): 2351–2355

    Article  PubMed  Google Scholar 

  2. Celardo I, Traversa E, Ghibelli L. Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol, 2011,9(1):47–51

    CAS  PubMed  Google Scholar 

  3. Celardo I, Pedersen JZ, Traversa E, et al. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011,3(4):1411–1420

    Article  CAS  PubMed  Google Scholar 

  4. Wason MS, Colon J, Das S, et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine, 2013,9(4):558–569

    CAS  PubMed  Google Scholar 

  5. Gao Y, Chen K, Ma JL, et al. Cerium oxide nanoparticles in cancer. Onco Targets Ther, 2014,7:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirst SM, Karakoti AS, Tyler RD, et al. Antiinflammatory properties of cerium oxide nanoparticles. Small, 2009,5(24):2848–2856

    Article  CAS  PubMed  Google Scholar 

  7. Estevez AY, Pritchard S, Harper K, et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med, 2011,51(6):1155–1163

    Article  CAS  PubMed  Google Scholar 

  8. Kim CK, Kim T, Choi IY, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl, 2012,51(44):11039–11043

    Article  CAS  PubMed  Google Scholar 

  9. Heckman KL, DeCoteau W, Estevez A, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano, 2013,7(12):10582–10596

    Article  CAS  PubMed  Google Scholar 

  10. Niu J, Azfer A, Rogers LM, et al. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res, 2007,73(3):549–559

    Article  CAS  PubMed  Google Scholar 

  11. Demaerschalk BM, Kleindorfer DO, Adeoye OM, et al. Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2016,47(2):581–641

    PubMed  Google Scholar 

  12. Davis SM, DonnanGA. 4.5 hours: the new time window for tissue plasminogen activator in stroke. Stroke, 2009,40(6):2266–2267

    Article  PubMed  Google Scholar 

  13. Messé SR, Fonarow GC, Smith EE, et al. Use of tissuetype plasminogen activator before and after publication of the European Cooperative Acute Stroke Study III in Get With The Guidelines-Stroke. Circ Cardiovasc Qual Outcomes, 2012,5(3):321–326

    Article  PubMed  Google Scholar 

  14. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology, 2008,55(3): 310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Yuan X, Liu T, et al. Neuroprotective activity of lavender oil on transient focal cerebral ischemia in mice. Molecules, 2012,17(8):9803–9817

    Article  CAS  PubMed  Google Scholar 

  16. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab, 2001,21(1):2–14

    Article  CAS  PubMed  Google Scholar 

  17. Mehta SH, Webb RC, Ergul A, et al. Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am J Physiol Regul Integr Comp Physiol, 2004,286(2):R283–288

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura T, Kume T, Katsuki H, et al. Protective effect of serofendic acid on ischemic injury induced by occlusion of the middle cerebral artery in rats. Eur J Pharmacol, 2008,586(1-3):151–155

    Article  CAS  PubMed  Google Scholar 

  19. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012,24(5):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gutteridge JM, Halliwell B. Comments on review of Free Radicals in Biology and Medicine, second edition, by Barry Halliwell and John M. C. Gutteridge. Free Radic Biol Med, 1992,12(1):93–95

    Article  CAS  PubMed  Google Scholar 

  21. Matsuda S, Umeda M, Uchida H, et al. Alterations of oxidative stress markers and apoptosis markers in the striatum after transient focal cerebral ischemia in rats. J Neural Transm, 2009,116(4):395–404

    Article  CAS  PubMed  Google Scholar 

  22. Lee B, Clarke D, Al Ahmad A, et al. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest, 2011,121(8):3005–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets, 2013,12(5):698–714

    Article  CAS  PubMed  Google Scholar 

  24. Celardo I, De Nicola M, Mandoli C, et al. Ce(3)+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano, 2011,5(6):4537–4549

    Article  CAS  PubMed  Google Scholar 

  25. Neumann G, Hicks J. Effects of Cerium and Aluminum in Cerium-Containing Hierarchical HZSM-5 Catalysts for Biomass Upgrading. Topics in Catalysis, 2012,55(3-4):196–208

    Article  CAS  Google Scholar 

  26. Korsvik C, Patil S, Seal S, et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb), 2007,10:1056–1058

    Article  Google Scholar 

  27. Ganesana M, Erlichman JS, Andreescu S. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radic Biol Med, 2012,53(12):2240–2249

    Article  CAS  PubMed  Google Scholar 

  28. Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb), 2010,46(16):2736–2738

    Article  CAS  Google Scholar 

  29. Dowding JM, Dosani T, Kumar A, et al. Cerium oxide nanoparticles scavenge nitric oxide radical (NO). Chem Commun (Camb), 2012,48(40):4896–4898

    Article  CAS  Google Scholar 

  30. Xue Y, Luan QF, Yang D, et al. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C, 2011,115(11):4433–4438

    Article  CAS  Google Scholar 

  31. Asati A, Santra S, Kaittanis C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl, 2009,48(13):2308–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Yang F, Zhang HX, et al. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis, 2013,4:e783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Das M, Patil S, Bhargava N, et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials, 2007,28(10):1918–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schubert D, Dargusch R, Raitano J, et al. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun, 2006,342(1):86–91

    Article  CAS  PubMed  Google Scholar 

  35. Chen XM, Chen HS, Xu MJ, et al. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin, 2013,34(1):67–77

    Article  CAS  PubMed  Google Scholar 

  36. Pinzon-Daza ML, Campia I, Kopecka J, et al. Nanoparticle-and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Curr Drug Metab, 2013,14(6):625–640

    Article  CAS  PubMed  Google Scholar 

  37. Matoba T, Egashira K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int Heart J, 2014,55(4):281–286

    Article  CAS  PubMed  Google Scholar 

  38. Thompson BJ, Ronaldson PT. Drug delivery to the ischemic brain. Adv Pharmacol, 2014,71:165–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. Faseb J, 2009,23(5):1384–1395

    Article  CAS  PubMed  Google Scholar 

  40. Yun X, Maximov VD, Yu J, et al. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab, 2013,33(4):583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karakoti AS, Monteiro-Riviere NA, Aggarwal R, et al. Nanoceria as Antioxidant: Synthesis and Biomedical Applications. JOM (1989), 2008,60(3):33–37

    Article  CAS  Google Scholar 

  42. Wong LL, Hirst SM, Pye QN, et al. Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS One, 2013,8(3):e58431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou X, Wong LL, Karakoti AS, et al. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One, 2011,6(2):e16733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cimini A, D'Angelo B, Das S, et al. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Abeta aggregates modulate neuronal survival pathways. Acta Biomater, 2012,8(6):2056–2067

    Article  CAS  PubMed  Google Scholar 

  45. Pagliari F, Mandoli C, Forte G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano, 2012,6(5):3767–3775

    Article  CAS  PubMed  Google Scholar 

  46. Lin W, Huang YW, Zhou XD, et al. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol, 2006,25(6):451–457

    Article  CAS  PubMed  Google Scholar 

  47. Alili L, Sack M, Karakoti AS, et al. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials, 2011,32(11): 2918–2929

    Article  CAS  PubMed  Google Scholar 

  48. Karakoti AS, Satyanarayana VNTK, Suresh Babu K, et al. Direct Synthesis of Nanoceria in Aqueous Polyhydroxyl Solutions. J Phys Chem C, 2007,111(46):17232–17240

    Article  CAS  Google Scholar 

  49. Portioli C, Benati D, Pii Y, et al. Short-term biodistribution of cerium oxide nanoparticles in mice: focus on brain parenchyma. Nanosci Nanotechnol Lett, 2013,5(11): 1174–1181

    Article  CAS  Google Scholar 

  50. Ma JY, Mercer RR, Barger M, et al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology, 2011,5(3):312–325

    Article  CAS  PubMed  Google Scholar 

  51. Ma JY, Zhao H, Mercer RR, et al. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol, 2012,262(3):255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perez JM, Asati A, Nath S, et al. Synthesis of biocompatible dextran-coated nanoceria with pHdependent antioxidant properties. Small, 2008,4(5):552–556

    Article  CAS  PubMed  Google Scholar 

  53. Asati A, Santra S, Kaittanis C, et al. Surface-chargedependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano, 2010,4(9):5321–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karakoti AS, Munusamy P, Hostetler K, et al. Preparation and Characterization Challenges to Understanding Environmental and Biological Impacts of Nanoparticles. Surf Interface Anal, 2012,44(5):882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dowding JM, Das S, Kumar A, et al. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano, 2013,7(6):4855–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patil S, Reshetnikov S, Haldar MK, et al. Surface-Derivatized Nanoceria with Human Carbonic Anhydrase II Inhibitors and Fluorophores: A Potential Drug Delivery Device. J Phys Chem C, 2007,111(24):8437–8442

    Article  CAS  Google Scholar 

  57. Vincent A, Babu S, Heckert E, et al. Protonated nanoparticle surface governing ligand tethering and cellular targeting. ACS Nano, 2009,3(5):1203–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li M, Shi P, Xu C, et al. Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. Chem Sci, 2013,4(6):2536–2542

    Article  CAS  Google Scholar 

  59. Bi JJ, Yi L. Effects of integrins and integrin alphavbeta3 inhibitor on angiogenesis in cerebral ischemic stroke. J Huazhong Univ Sci Technolog Med Sci, 2014,34(3):299–305

    Article  CAS  PubMed  Google Scholar 

  60. Shimamura N, Matchett G, Yatsushige H, et al. Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke, 2006,37(7):1902–1909

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yi  (易 黎).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Fang, T., Lu, Lq. et al. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 480–486 (2016). https://doi.org/10.1007/s11596-016-1612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1612-9

Keywords

Navigation