Skip to main content
Log in

Two Novel Catalysts Based on Nickel-Substituted POMs Hybrids for Photocatalytic H2 Evolution from Water Splitting

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two novel hybrid compounds [Ni(2,2-bpy)3]2.5(PNiW11O40)]·3.1(H2O) (1) and [Ni4(pyz)2][A-α-PW9O34]2·(pyz)5·7H2O (2) (bpy = 2,2′-bpyridine, pyz = piperazine) have been synthesized under mild hydrothermal condition and structurally characterized by physico-chemical and series spectroscopic methods. Compound 1 contains nickel(II) mono-substituted Keggin type polyoxotungstate {PNiW11O39} anion, two and a half discrete [NiII(2,2-bpy)3]2+ complexes and 3.1 water molecules. Compound 2 is composed of a novel tetra-nickel-substituted sandwich-type {[Ni4(pyz)2][A-α-PW9O34]2} polyanion, three free piperazine molecules and seven lattice water molecules. Extensive hydrogen-bonding interactions were observed in 1 and 2. Through multipoint hydrogen-bonding interactions, a novel 2D network with rectangular cavities for 1 and a 3D porous supermolecule structure for 2 generate, respectively. The investigation of both nickel-substituted hybrids as efficient and robust catalysts for H2 production from water splitting and photo-degradation pharmaceutical wastewater upon visible-light irradiation was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. R. Amanchi, A. M. Khenkin, Y. Diskin-Posner, and R. Neumann (2015). ACS Catal. 5, 3336.

    Article  CAS  Google Scholar 

  2. C. Singh, S. Mukhopadhyay, and S. K. Das (2018). Inorg. Chem. 57, 6479.

    Article  CAS  PubMed  Google Scholar 

  3. J. W. Zhao, Y. Z. Li, L. J. Chen, and G. Y. Yang (2016). Chem. Commun. 52, 4418.

    Article  CAS  Google Scholar 

  4. S. Yao, J. H. Yan, H. Duan, Z. M. Zhang, and E. B. Wang (2015). RSC Adv. 5, 76206.

    Article  CAS  Google Scholar 

  5. S. Li, L. Zhang, B. Lu, E. Yan, T. Wang, L. Li, J. Wang, Y. Yu, and Q. Mu (2018). New J. Chem. 42, 7247.

    Article  CAS  Google Scholar 

  6. S. Roy, V. Vemuri, S. Maiti, K. S. Manoj, U. Subbarao, and S. C. Peter (2018). Inorg. Chem. 57, 12078.

    Article  CAS  PubMed  Google Scholar 

  7. N. Zhang, L. Y. Hong, A. F. Geng, J. H. Yan, S. Yao, and Z. M. Zhang (2018). Chin. Chem. Lett. 29, 1094.

    CAS  Google Scholar 

  8. J. R. Li, Y. Tao, Q. Yu, X. H. Bu, H. Sakamoto, and S. Kitagawa (2008). Chem. Eur. J. 14, 2771.

    Article  CAS  PubMed  Google Scholar 

  9. R. B. Getman, Y. S. Bae, C. E. Wilmer, and R. Q. Snurr (2012). Chem. Rev. 112, 703.

    Article  CAS  PubMed  Google Scholar 

  10. D. Liu, Y. Lu, H. Q. Tan, W. L. Chen, Z. M. Zhang, Y. G. Li, and E. B. Wang (2013). Chem. Commun. 49, 3673.

    Article  CAS  Google Scholar 

  11. P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, and C. Serre (2013). Chem. Rev. 112, 1232.

    Google Scholar 

  12. L. Wang, B. B. Zhou, K. Yu, Z. H. Su, S. Gao, L. L. Chu, J. R. Liu, and G. Y. Yang (2013). Inorg. Chem. 52, 5119.

    Article  CAS  PubMed  Google Scholar 

  13. D. Chai, Y. Hou, K. P. O’Halloran, H. Pang, H. Ma, G. Wang, and X. Wang (2018). ChemElectroChem. 5, 3443.

    Article  CAS  Google Scholar 

  14. G. Wang, T. Chen, X. Wang, H. Ma, and H. Pang (2017). Eur. J. Inorg. Chem. 2017, 5350.

    Article  CAS  Google Scholar 

  15. S. Tsubaki, S. Hayakawa, T. Ueda, T. Mitani, E. Suzuki, S. Fujii and Y. Wada (2018). Materials 11, 1202.

    Article  PubMed Central  CAS  Google Scholar 

  16. D. F. Chai, C. J. Gómez-García, B. Li, H. J. Pang, H. Y. Ma, X. M. Wang, and L. C. Tan (2019). Chem. Eng. J. 373, 587.

    Article  CAS  Google Scholar 

  17. M. Ibrahim, V. Mereacre, N. Leblanc, W. Wernsdorfer, C. E. Anson, and A. K. Powell (2015). Angew. Chem. Int. Ed. 54, 15574.

    Article  CAS  Google Scholar 

  18. M. Liu, X. F. Yang, H. B. Zhu, B. S. Di, and Y. Zhao (2018). Dalton Trans. 47, 5245.

    Article  CAS  PubMed  Google Scholar 

  19. Z. F. Zhang, H. Y. Ma, H. J. Pang, C. J. Zhang, D. F. Chai, and Y. Hou (2018). J. Solid State Chem. 258, 17.

    Google Scholar 

  20. L. Yu, Y. Ding, and M. Zheng (2017). Appl. Catal. B 209, 45.

    Article  CAS  Google Scholar 

  21. R. Sivakumar, J. Thomas, and M. Yoon (2017). J. Photochem. Photobiol. B 13, 277.

    Article  CAS  Google Scholar 

  22. X. J. Kong, Z. K. Lin, Z. M. Zhang, T. Zhang, and W. B. Lin (2016). Angew. Chem. Int. Ed. 55, 6411.

    Article  CAS  Google Scholar 

  23. S. Goberna-Ferrón, L. Vigara, J. Soriano-López, J. R. Galán-Mascarós (2012). Inorg. Chem. 51, 11707.

    Article  CAS  Google Scholar 

  24. J. J. Stracke and R. G. Finke (2013). ACS Catal. 4, 79.

    Article  CAS  Google Scholar 

  25. R. Schiwon, K. Klingan, H. Dau, and C. Limberg (2014). Chem. Commun. 50, 100.

    Article  CAS  Google Scholar 

  26. K. Nishiki, N. Umehara, Y. Kadota, X. López, J. M. Poblet, C. A. Mezui, A. L. Teillout, I. M. Mbomekalle, P. Oliveira, M. Miyamoto, T. Sano, and M. Sadakane (2016). Dalton Trans. 45, 3715.

    Article  CAS  PubMed  Google Scholar 

  27. S. Tanaka, M. Annaka, and K. Sakai (2012). Chem. Commun. 48, 1653.

    Article  CAS  Google Scholar 

  28. J. W. Vickers, H. Lv, J. M. Sumliner, G. Zhu, Z. Luo, D. G. Musaev, Y. V. Geletii, and C. L. Hill (2013). J. Am. Chem. Soc. 135, 14110.

    Article  CAS  PubMed  Google Scholar 

  29. H. Lv, J. Song, Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kogerler, P. F. Zhuk, J. Bacsa, G. Zhu, and C. L. Hill (2014). J. Am. Chem. Soc. 136, 9268.

    Article  CAS  PubMed  Google Scholar 

  30. L. Z. Qiao, M. Song, A. F. Geng, and S. Yao (2019). Chin. Chem. Lett. 30, 1273.

    Article  CAS  Google Scholar 

  31. X. B. Han, Z. M. Zhang, T. Zhang, Y. G. Li, W. Lin, W. You, Z. M. Su, and E. B. Wang (2014). J. Am. Chem. Soc. 136, 5359.

    Article  CAS  PubMed  Google Scholar 

  32. M. Quintana, A. M. López, S. Rapino, F. M. Toma, M. Iurlo, M. Carraro, A. Sartorel, C. Maccato, X. Ke, C. Bittencourt, T. Da Ros, G. Van Tendeloo, M. Marcaccio, F. Paolucci, M. Prato, and M. Bonchio (2013). ACS Nano 7, 811.

  33. J. Soriano-López, S. Goberna-Ferrón, L. Vigara, J. J. Carbó, J. M. Poblet, and J. R. Galán-Mascarós (2013). Inorg. Chem. 52, 4753.

    Article  CAS  Google Scholar 

  34. S. X. Guo, Y. Liu, C. Y. Lee, A. M. Bond, J. Zhang, Y. V. Geletii, and C. L. Hill (2013). Energy Environ. Sci. 6, 2654.

    Article  CAS  Google Scholar 

  35. Y. Liu, S. X. Guo, A. M. Bond, J. Zhang, Y. V. Geletii, and C. L. Hill (2013). Inorg. Chem. 52, 11986.

    Article  CAS  PubMed  Google Scholar 

  36. T. J. R. Weakly, H. T. Evans, J. S. Showell, G. F. Tourne, and C. M. Tourne (1973). J. Chem. Soc. Chem. Commun. 4, 139.

    Article  Google Scholar 

  37. S. B. Li, W. Zhu, H. Y. Ma, H. J. Pang, H. Liu, and T. T. Yu (2013). RSC Adv. 3, 9770.

    Article  CAS  Google Scholar 

  38. C. J. Zhang, H. J. Pang, Q. Tang, and Y. G. Chen (2012). Dalton Trans. 41, 93650.

    Google Scholar 

  39. Y. N. Chi, F. Y. Cui, A. R. Jia, X. Y. Ma, and C. W. Hu (2012). CrystEngComm 14, 3183.

    Article  CAS  Google Scholar 

  40. W. Wang, Y. F. Qiu, and L. Xu (2014). J. Coord. Chem. 67, 797.

    Article  CAS  Google Scholar 

  41. X. L. Wang, N. Han, H. Y. Lin, J. Luan, A. X. Tian, and D. N. Liu (2014). Inorg. Chem. Commun. 42, 10.

    Article  CAS  Google Scholar 

  42. Y. Wang, Y. Peng, L. N. Xiao, Y. Y. Hu, L. M. Wang, Z. M. Gao, T. G. Wang, F. Q. Wu, X. B. Cui, and J. Q. Xu (2012). CrystEngComm. 14, 1049.

    Article  CAS  Google Scholar 

  43. J. W. Zhao, Q. X. Han, P. T. Ma, L. J. Chen, J. P. Wang, and J. Y. Niu (2009). Inorg. Chem. Commun. 12, 707.

    Article  CAS  Google Scholar 

  44. Z. F. Zhao, B. B. Zhou, Z. H. Su, and H. Y. Ma (2010). J. Solid State Sci. 12, 803.11.

    Google Scholar 

  45. Y. Ji, M. Ma, X. Ji, X. Xiong, and X. Sun (2018). Front. Chem. Sci. Eng. 12, 467.

    Article  CAS  Google Scholar 

  46. J. Masud, P. C. Ioannou, N. Levesanos, P. Kyritsis, and M. Nath (2016). ChemSusChem 9, 3128.

    Article  CAS  PubMed  Google Scholar 

  47. Q. Liu, L. Xie, Z. Liu, G. Du, A. M. Asiri, and X. Sun (2017). Chem. Commun. 53, 12446.

    Article  CAS  Google Scholar 

  48. F. Xie, H. Wu, J. Mou, D. Lin, C. Xu, C. Wu, and X. Sun (2017). J. Catal. 356, 165.

    Article  CAS  Google Scholar 

  49. R. Ge, X. Ren, F. Qu, D. Liu, M. Ma, S. Hao, G. Du, A. M. Asiri, L. Chen, and X. Sun (2017). Chem. Eur. J. 23, 6959.

    Article  CAS  PubMed  Google Scholar 

  50. H. Jia, Y. Yao, J. Zhao, Y. Gao, Z. Luo, and P. Du (2018). J. Mater. Chem. A 6, 1188.

    Article  CAS  Google Scholar 

  51. M. Zhang, M. T. Zhang, C. Hou, Z. F. Ke, and T. B. Lu (2014). Angew. Chem. Int. Ed. 53, 13042.

    Article  CAS  Google Scholar 

  52. G. Y. Luo, H. H. Huang, J. W. Wang, and T. B. Lu (2016). ChemSusChem 9, 485.

    Article  CAS  PubMed  Google Scholar 

  53. D. Wang and C. O. Bruner (2017). Inorg. Chem. 56, 13638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D. Cai, A. Han, P. Y. Yang, Y. F. Wu, P. Du, M. Kurmoo, and M. H. Zeng (2017). Electrochim. Acta 249, 343.

    Article  CAS  Google Scholar 

  55. J. W. Wang, C. Hou, H. H. Huang, W. J. Liu, Z. F. Ke, and T. B. Lu (2017). Catal. Sci. Technol. 7, 5585.

    Article  CAS  Google Scholar 

  56. J. Lin, P. Kang, X. Liang, B. Ma, and Y. Ding (2017). Electrochim. Acta 258, 353.

    Article  CAS  Google Scholar 

  57. H. J. Lv, W. W. Guo, K. F. Wu, Z. Y. Chen, J. Bacsa, G. M. Djamaladdin, V. G. Yurii, S. M. Lauinger, T. Q. Lian, and C. L. Hill (2014). J. Am. Chem. Soc. 136, 14015.

    Article  CAS  PubMed  Google Scholar 

  58. R. Moré, R. Müller, J. Soriano-López, A. Linden, and G. R. Patzke (2015). ChemPlusChem 80, 1389.

    Article  PubMed  CAS  Google Scholar 

  59. C. J. Wang, S. Yao, Y. Z. Chen, Z. M. Zhang, and E. B. Wang (2016). RSC Adv. 6, 99010.

    Article  CAS  Google Scholar 

  60. B. S. Mukhopadhyay and S. Das (2018). J. Chem. Sci. 130, 93.

    Article  CAS  Google Scholar 

  61. X. Liu, Y. Li, S. Peng, G. Lu, and S. Li (2012). Int. J. Hydrog. Energy 37, 12150.

    Article  CAS  Google Scholar 

  62. X. Shang, R. Liu, G. Zhang, S. Zhang, H. Cao, and Z. Gu (2014). New J. Chem. 38, 1315.

    Article  CAS  Google Scholar 

  63. J. Zhao, Y. Ding, J. Wei, X. Du, Y. Yu, and R. Han (2014). Int. J. Hydrog. Energy 39, 18908.

    Article  CAS  Google Scholar 

  64. Z. Wang, Y. Lu, Y. Li, S. Wang, and E. Wang (2012). Chin. Sci. Bull. 57, 2265.

    Article  CAS  Google Scholar 

  65. K. V. Allmen, R. Moré, R. Müller, J. Soriano-López, A. Linden, and G. R. Patzke (2015). ChemPlusChem 80, 1389.

    Article  CAS  Google Scholar 

  66. W. Madison, Bruker APEX2 Software, V2.0-1 (Bruker AXS Inc, Fitchburg, WI, 2005).

    Google Scholar 

  67. G. M. Sheldrick (2015). Acta Cryst. A 71, 3.

    Article  CAS  Google Scholar 

  68. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339.

    Article  CAS  Google Scholar 

  69. S. Y. Shi, Y. Wang, X. B. Cui, G. W. Wang, G. D. Yang, and J. Q. Xu (2009). Dalton Trans. https://doi.org/10.1039/B906066A.

    Article  PubMed  Google Scholar 

  70. S. Y. Shi, D. Bai, H. X. Du, W. Jiang, J. Zhang, and X. B. Cui (2020). J. Clust. Sci. 31, 1221.

    Article  CAS  Google Scholar 

  71. D. Altermatt and I. D. Brown (1985). Acta Cryst. B 41, 240.

    Article  Google Scholar 

  72. Y. C. Huang, W. J. Fan, B. Long, H. B. Li, F. Y. Zhao, Z. L. Liu, Y. X. Tong, and H. B. Ji (2016). Appl. Catal. Environ. 185, 68.

    Article  CAS  Google Scholar 

  73. Y. Qiao, Y. F. Ma, W. Jiang, X. Y. Wang, W. S. Guan, G. B. Che, W. K. Li, and F. Qin (2018). CrystEngComm 20, 7782.

    Article  CAS  Google Scholar 

  74. S. Yu, H. J. Yun, Y. H. Kim, and J. Yi (2014). Appl. Catal. Environ. 144, 893.

    Article  CAS  Google Scholar 

  75. C. Lei, F. Han, D. Li, W. C. Li, Q. Sun, X. Q. Zhang, and A. H. Lu (2013). Nanoscale 5, 1168.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 22061047.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Y. Shi or Lin Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, D., Zhou, C.W., Zhang, J.Y. et al. Two Novel Catalysts Based on Nickel-Substituted POMs Hybrids for Photocatalytic H2 Evolution from Water Splitting. J Clust Sci 33, 1951–1960 (2022). https://doi.org/10.1007/s10876-021-02112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02112-6

Keywords

Navigation