Skip to main content
Log in

Green Synthesis of Gold Nanoparticles (AuNPs) As Potential Drug Carrier for Treatment and Care of Cardiac Hypertrophy Agents

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Owing to their autocatalytic properties, gold nanoparticles (AuNPs) are used in biomedical applications. While their usage in neurodegenerative disease control, diabetes, etc. has been documented, their function is mostly untapped in cardiovascular disease treatment. Hence, in this work is the leading to combine, classify and test cardiomyoblast hypertrophy efficiency of AuNPs. In the case of AuNPs, the Imperata cylindrica extracts (IPC) and gold solution (HAuCl4) were fabricated with 1:5 volume ratios and were distinguished by specific processes, such as ultraviolet–visible (UV–vis) spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The radical scavenging of superoxide and hydroxylic AuNPs has been shown to be stronger relative to bulk gold and extracts. In cell line tests, rat cardiomyoblasts H9c2 and 3T3 fluorescence were used in this work. The generation of intracellular superoxide anion was less due to the incubation of greater AuNPs levels. In addition, preliminary findings gave an insight into the role of AuNPs in attenuating cardiomyoblastic induced isoproterenol hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Vetchinkina, E. Loshchinina, M. Kupryashina, A. Burov, and V. Nikitina (2019). Shape and size diversity of gold, silver, selenium, and silica nanoparticles prepared by green synthesis using fungi and bacteria. Ind. Eng. Chem. Res. 58, 17207–17218. https://doi.org/10.1021/acs.iecr.9b03345.

    Article  CAS  Google Scholar 

  2. B. Yang, J. Chou, X. Dong, C. Qu, Q. Yu, K. J. Lee, and N. Harvey (2017). Size-controlled green synthesis of highly stable and uniform small to ultrasmall gold nanoparticles by controlling reaction steps and pH. J. Phys. Chem. C. 121, 8961–8967. https://doi.org/10.1021/acs.jpcc.7b00434.

    Article  CAS  Google Scholar 

  3. M.-J. Lee, S.-H. Lim, J.-M. Ha, and S.-M. Choi (2016). Green synthesis of high-purity mesoporous gold sponges using self-assembly of gold nanoparticles induced by thiolated poly(ethylene glycol). Langmuir. 32, 5937–5945. https://doi.org/10.1021/acs.langmuir.6b01197.

    Article  CAS  PubMed  Google Scholar 

  4. N. S. Thakur, J. Bhaumik, S. Kirar, and U. C. Banerjee (2017). Development of gold-based phototheranostic nanoagents through a bioinspired route and their applications in photodynamic therapy. ACS Sustain. Chem. Eng. 5, 7950–7960. https://doi.org/10.1021/acssuschemeng.7b01501.

    Article  CAS  Google Scholar 

  5. T. Kunoh, M. Takeda, S. Matsumoto, I. Suzuki, M. Takano, H. Kunoh, and J. Takada (2018). Green synthesis of gold nanoparticles coupled with nucleic acid oxidation. ACS Sustain. Chem. Eng. 6, 364–373. https://doi.org/10.1021/acssuschemeng.7b02610.

    Article  CAS  Google Scholar 

  6. S. Xu, L. Yong, and P. Wu (2013). One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl. Mater. Interfaces. 5, 654–662. https://doi.org/10.1021/am302076x.

    Article  CAS  PubMed  Google Scholar 

  7. S. Fazal, A. Jayasree, S. Sasidharan, M. Koyakutty, S. V. Nair, and D. Menon (2014). Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl. Mater. Interfaces. 6, 8080–8089. https://doi.org/10.1021/am500302t.

    Article  CAS  PubMed  Google Scholar 

  8. R. K. Sharma, S. Gulati, and S. Mehta (2012). Preparation of gold nanoparticles using tea: a green chemistry experiment. J. Chem. Educ. 89, 1316–1318. https://doi.org/10.1021/ed2002175.

    Article  CAS  Google Scholar 

  9. Y.-S. Bao, M. Baiyin, B. Agula, M. Jia, and B. Zhaorigetu (2014). Energy-efficient green catalysis: supported gold nanoparticle-catalyzed aminolysis of esters with inert tertiary amines by C-O and C–N bond activations. J. Org. Chem. 79, 6715–6719. https://doi.org/10.1021/jo500877m.

    Article  CAS  PubMed  Google Scholar 

  10. R. Genç, G. Clergeaud, M. Ortiz, and C. K. O’Sullivan (2011). Green synthesis of gold nanoparticles using glycerol-incorporated nanosized liposomes. Langmuir. 27, 10894–10900. https://doi.org/10.1021/la201771s.

    Article  CAS  PubMed  Google Scholar 

  11. D. Zulfiana, A. Karimah, S. H. Anita, N. Masruchin, K. Wijaya, L. Suryanegara, W. Fatriasari, and A. Fudholi (2020). Antimicrobial Imperata cylindrica paper coated with anionic nanocellulose crosslinked with cationic ions. Int. J. Biol. Macromol. 164, 892–901. https://doi.org/10.1016/j.ijbiomac.2020.07.102.

    Article  CAS  PubMed  Google Scholar 

  12. A. H. Y. Kwok, Y. Wang, and W. S. Ho (2016). Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro. Phytomedicine. 23, 558–565. https://doi.org/10.1016/j.phymed.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  13. V. Fuente, L. Rufo, B. H. Juárez, N. Menéndez, M. García-Hernández, E. Salas-Colera, and A. Espinosa (2016). Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: imperata cylindrica (L.) PX Beauv. J. Struct. Biol. 193, 23–32. https://doi.org/10.1016/j.jsb.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  14. R. Liu, S. Chen, G. Ren, F. Shao, and H. Huang (2013). Phenolic Compounds from Roots of Imperata cylindrica var. major. Chinese Herb. Med. 5, 240–243. https://doi.org/10.3969/j.issn.1674-6348.2013.03.011.

    Article  CAS  Google Scholar 

  15. Y. Sakai, J. Shinozaki, A. Takano, K. Masuda, and T. Nakane (2018). Three novel 14-epiarborane triterpenoids from Imperata cylindrica Beauv. var. major. Phytochem. Lett. 26, 74–77. https://doi.org/10.1016/j.phytol.2018.05.002.

    Article  CAS  Google Scholar 

  16. B. Tamang, D. L. Rockwood, M. Langholtz, E. Maehr, B. Becker, and S. Segrest (2008). Fast-growing trees for cogongrass (Imperata cylindrica) suppression and enhanced colonization of understory plant species on a phosphate-mine clay settling area. Ecol. Eng. 32, 329–336. https://doi.org/10.1016/j.ecoleng.2007.12.008.

    Article  Google Scholar 

  17. S. Yang, S. Mishra, L. Chen, J. Zhou, D. W. Chan, S. Chatterjee, and H. Zhang (2015). Integrated glycoprotein immobilization method for glycopeptide and glycan analysis of cardiac hypertrophy. Anal. Chem. 87, 9671–9678. https://doi.org/10.1021/acs.analchem.5b01663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Wang, H. Choi, N. C. Chung, Q. Cao, D. C. M. Ng, B. Mirza, S. B. Scruggs, D. Wang, A. O. Garlid, and P. Ping (2018). Integrated dissection of cysteine oxidative post-translational modification proteome during cardiac hypertrophy. J. Proteome Res. 17, 4243–4257. https://doi.org/10.1021/acs.jproteome.8b00372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Chameettachal, S. Midha, and S. Ghosh (2016). Regulation of chondrogenesis and hypertrophy in silk fibroin-gelatin-based 3D bioprinted constructs. ACS Biomater. Sci. Eng. 2, 1450–1463. https://doi.org/10.1021/acsbiomaterials.6b00152.

    Article  CAS  PubMed  Google Scholar 

  20. C. Wang, S. Sun, L. Zhang, J. Yin, T. Jiao, L. Zhang, Y. Xu, J. Zhou, and Q. Peng (2019). Facile preparation and catalytic performance characterization of AuNPs-loaded hierarchical electrospun composite fibers by solvent vapor annealing treatment. Colloids Surfaces A Physicochem. Eng. Asp. 561, 283–291. https://doi.org/10.1016/j.colsurfa.2018.11.002.

    Article  CAS  Google Scholar 

  21. K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, and Q. Peng (2018). Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater. 61, 728–736. https://doi.org/10.1007/s40843-017-9196-8.

    Article  CAS  Google Scholar 

  22. J. Yin, F. Zhan, T. Jiao, W. Wang, G. Zhang, J. Jiao, G. Jiang, Q. Zhang, J. Gu, and Q. Peng (2020). Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity. Sci. China Mater. 63, 2228–2238. https://doi.org/10.1007/s40843-020-1299-4.

    Article  CAS  Google Scholar 

  23. R. Xing, K. Liu, T. Jiao, N. Zhang, K. Ma, R. Zhang, Q. Zou, G. Ma, and X. Yan (2016). An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 28, 3669–3676. https://doi.org/10.1002/adma.201600284.

    Article  CAS  PubMed  Google Scholar 

  24. J. Rong, J. Han, L. Dong, Y. Tan, H. Yang, L. Feng, Q.-W. Wang, R. Meng, J. Zhao, S.-Q. Wang, and X. Chen (2014). Glycan imaging in intact rat hearts and glycoproteomic analysis reveal the upregulation of sialylation during cardiac hypertrophy. J. Am. Chem. Soc. 136, 17468–17476. https://doi.org/10.1021/ja508484c.

    Article  CAS  PubMed  Google Scholar 

  25. F.-R. Yao, C.-W. Sun, and S. K. C. Chang (2010). Morton lentil extract attenuated angiotensin II-induced cardiomyocyte hypertrophy via inhibition of intracellular reactive oxygen species levels in vitro. J. Agric. Food Chem. 58, 10382–10388. https://doi.org/10.1021/jf101648m.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Liu, X. Yan, G. Mao, L. Fang, B. Zhao, Y. Liu, H. Tang, and N. Wang (2013). Metabonomic profiling revealed an alteration in purine nucleotide metabolism associated with cardiac hypertrophy in rats treated with thiazolidinediones. J. Proteome Res. 12, 5634–5641. https://doi.org/10.1021/pr400587y.

    Article  CAS  PubMed  Google Scholar 

  27. J. Gallego-Delgado, A. Lazaro, J. I. Osende, M. G. Barderas, M. C. Duran, F. Vivanco, and J. Egido (2006). Comparison of the protein profile of established and regressed hypertension-induced left ventricular hypertrophy. J. Proteome Res. 5, 404–413. https://doi.org/10.1021/pr0503275.

    Article  CAS  PubMed  Google Scholar 

  28. C. Meng, X. Jin, L. Xia, S.-M. Shen, X.-L. Wang, J. Cai, G.-Q. Chen, L.-S. Wang, and N.-Y. Fang (2009). Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J. Proteome Res. 8, 2463–2475. https://doi.org/10.1021/pr801059u.

    Article  CAS  PubMed  Google Scholar 

  29. N. Liu, H. Su, Y. Zhang, and J. Kong (2020). The protective effect of 1,25(OH)2D3 against cardiac hypertrophy is mediated by the cyclin-dependent kinase inhibitor p21. Eur. J. Pharmacol. 888, 173510. https://doi.org/10.1016/j.ejphar.2020.173510.

    Article  CAS  PubMed  Google Scholar 

  30. D. S. Escudero, M. S. Brea, C. I. Caldiz, M. E. Amarillo, J. O. Aranda, E. L. Portiansky, N. G. Pérez, and R. G. Díaz (2020). PDE5 inhibition improves cardiac morphology and function in SHR by reducing NHE1 activity: repurposing Sildenafil for the treatment of hypertensive cardiac hypertrophy. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2020.173724.

    Article  PubMed  Google Scholar 

  31. M. Cao, Z. Mao, M. Peng, Q. Zhao, X. Sun, J. Yan, and W. Yuan (2020). Extracellular cyclophilin A induces cardiac hypertrophy via the ERK/p47phox pathway. Mol. Cell. Endocrinol. 518, 110990. https://doi.org/10.1016/j.mce.2020.110990.

    Article  CAS  PubMed  Google Scholar 

  32. N. Romano and M. Ceci (2020). Are microRNAs responsible for cardiac hypertrophy in fish and mammals? What we can learn in the activation process in a zebrafish ex vivo model. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165896. https://doi.org/10.1016/j.bbadis.2020.165896.

    Article  CAS  PubMed  Google Scholar 

  33. D. Rehana, D. Mahendiran, R. S. Kumar, and A. K. Rahiman (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother. 89, 1067–1077. https://doi.org/10.1016/j.biopha.2017.02.101.

    Article  CAS  PubMed  Google Scholar 

  34. R. Raj Kumar, M. K. Mohamed Subarkhan, and R. Ramesh (2015). Synthesis and structure of nickel(ii) thiocarboxamide complexes: effect of ligand substitutions on DNA/protein binding, antioxidant and cytotoxicity. RSC Adv. 5, 46760–46773. https://doi.org/10.1039/C5RA06112A.

    Article  CAS  Google Scholar 

  35. J. He, Y. Liang, M. Shi, and B. Guo (2020). Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 385, 123464. https://doi.org/10.1016/j.cej.2019.123464.

    Article  CAS  Google Scholar 

  36. A. Singh and P. K. Dutta (2020). Green synthesis, characterization and biological evaluation of chitin glucan based zinc oxide nanoparticles and its curcumin conjugation. Int. J. Biol. Macromol. 156, 514–521. https://doi.org/10.1016/j.ijbiomac.2020.04.081.

    Article  CAS  PubMed  Google Scholar 

  37. M. S. Mohamed Kasim, S. Sundar, and R. Rengan (2018). Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: Investigation on antiproliferative activity and apoptosis induction. Inorg. Chem. Front. 5, 585–596. https://doi.org/10.1039/c7qi00761b.

    Article  CAS  Google Scholar 

  38. T. Sathiya Kamatchi, M. K. Mohamed Subarkhan, R. Ramesh, H. Wang, and J. G. Małecki (2020). Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalt. Trans. 49, 11385–11395. https://doi.org/10.1039/D0DT01476A.

    Article  CAS  Google Scholar 

  39. M. K. M. Subarkhan and R. Ramesh (2016). Ruthenium(ii) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg. Chem. Front. 3, 1245–1255. https://doi.org/10.1039/C6QI00197A.

    Article  CAS  Google Scholar 

  40. M. K. Mohamed Subarkhan, R. Ramesh, and Y. Liu (2016). Synthesis and molecular structure of arene ruthenium(ii) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J. Chem. 40, 9813–9823. https://doi.org/10.1039/C6NJ01936F.

    Article  CAS  Google Scholar 

  41. S. Balaji, M. K. Mohamed Subarkhan, R. Ramesh, H. Wang, and D. Semeril (2020). Synthesis and structure of Arene Ru(II) N∧O-chelating complexes. In vitro cytotoxicity and cancer cell death mechanism. Organometallics 39, 1366–1375. https://doi.org/10.1021/acs.organomet.0c00092.

    Article  CAS  Google Scholar 

  42. T. Li, X. Weng, S. Cheng, D. Wang, G. Cheng, H. Gao, and Y. Li (2020). Wnt3a upregulation is involved in TGFβ1-induced cardiac hypertrophy. Cytokine. https://doi.org/10.1016/j.cyto.2020.155376.

    Article  PubMed  PubMed Central  Google Scholar 

  43. S. Cai, P. Wang, T. Xie, Z. Li, J. Li, R. Lan, Y. Ding, J. Lu, J. Ye, J. Wang, Z. Li, and P. Liu (2020). Histone H4R3 symmetric di-methylation by Prmt5 protects against cardiac hypertrophy via regulation of Filip1L/β-catenin. Pharmacol. Res. 161, 105104. https://doi.org/10.1016/j.phrs.2020.105104.

    Article  CAS  PubMed  Google Scholar 

  44. C. Song, H. Qi, Y. Liu, Y. Chen, P. Shi, S. Zhang, J. Ren, L. Wang, Y. Cao, and H. Sun (2020). Inhibition of lncRNA Gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ULK1 axis in mice. Mol Ther. https://doi.org/10.1016/j.ymthe.2020.10.024.

    Article  PubMed  PubMed Central  Google Scholar 

  45. H. Yan, H. Wang, X. Zhu, J. Huang, Y. Li, K. Zhou, Y. Hua, F. Yan, D.-Z. Wang, and Y. Luo (2020). Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Mol Ther Nucleic Acids. https://doi.org/10.1016/j.omtn.2020.11.007.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This study was supported by the key Laboratory Project of the Second Hospital of Tianjin Medical University (NO. 2019ZDSYS09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhang or Guiqin Zhang.

Ethics declarations

Conflict of the interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Cui, Z., Teng, G. et al. Green Synthesis of Gold Nanoparticles (AuNPs) As Potential Drug Carrier for Treatment and Care of Cardiac Hypertrophy Agents. J Clust Sci 33, 1129–1137 (2022). https://doi.org/10.1007/s10876-021-02003-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02003-w

Keywords

Navigation