Skip to main content

Advertisement

Log in

Formulation of Naringin Encapsulation in Zein/Caseinate Biopolymers and its Anti-adipogenic Activity in 3T3-L1 Pre-adipocytes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Naringin, a dietary flavonoid of citrus fruits, was encapsulated in biodegradable proteins of zein/casein biopolymers for its enhanced functional properties. The formulation conditions for the synthesis of colloidal particles were optimised by Response surface Methodology (RSM) and the levels were at zein/sodium casein ratio 1.75, pH 9 and naringin 8.7 mg/mL. The optimised nanoparticles showed the mean particle size of 234 nm, zeta potential of − 28.2 mV and a narrow size distribution with the encapsulation efficiency of 71 ± 2%. The physiochemical characteristics of the nanoparticles were analysed by SEM, FTIR, AFM, XRD and DSC techniques. The release kinetics study demonstrated that the release of naringin from the nanoparticles was pH dependent and had an appreciable amount of in vitro bioaccessibility. In 3T3-L1 cell culture study, the encapsulated naringin showed higher anti-adipogenic activity than the unencapsulated molecule by lowering the intracellular lipid accumulation. Further, the toxicity studies in Caco-2 cells indicated that the nanoparticles were free of any adverse effects. Collectively, naringin encapsulated colloidal formulation can be a promising delivery system in functional foods for varied health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Peterson, G. Beecher, S. Bhagwat, J. Dwyer, S. Gebhardt, D. Haytowitz, and J. Holden (2006). Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. S74-S80.

  2. [2] G.C. Jagetia, and V. Lalnuntluangi (2016). The citrus flavanone naringin enhances antioxidant status in the albino rat liver treated with doxorubicin. Biochem. Mol. Biol. J. 2(2), 1-9.

    Article  Google Scholar 

  3. [3] Y. Chtourou, B. Aouey, S. Aroui, M. Kebieche, and H. Fetoui (2016). Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem. Biol. Interact. 243, 1-9.

    Article  PubMed  CAS  Google Scholar 

  4. [4] H. Cao, J. Liu, P. Shen, J. Cai, Y. Han, K. Zhu, Y. Fu, N. Zhang, Z. Zhang, and Y. Cao (2018). Protective effect of naringin on DSS-Induced ulcerative colitis in mice, J. Agric. Food Chem. 66(50), 13133-13140.

    Article  PubMed  CAS  Google Scholar 

  5. [5] A.N. Murunga, D.O. Miruka, C. Driver, F.S. Nkomo, S. Cobongela, and P.M.O. Owira (2016). Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in Type 1 diabetes rat model. PLoS One, 11(4), e0153241.

    Article  PubMed  PubMed Central  Google Scholar 

  6. [6] B. Ben-Azu, E.E. Nwoke, A.O. Aderibigbea, I.A. Omogbiyaa, A.M. Ajayia, E.T. Olonodea, S. Umukoroa, and E.O. Iwalewa (2019). Possible neuroprotective mechanisms of action involved in the neurobehavioral property of naringin in mice. Biomed. Pharmacother. 109, 536-546.

    Article  PubMed  CAS  Google Scholar 

  7. [7] J. Cui, G. Wang, A.D. Kandhare, A.A. Mukherjee-Kandhare, and S.L. Bodhankar (2018). Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity, Possible role of PPAR-γ, Bax/Bcl-2, and caspase-3. Food Chem. Toxicol. 121, 95-108.

    Article  PubMed  CAS  Google Scholar 

  8. [8] X. Wu, Z. Huang, J. Liu, Y. Chen, H. Huang, Y. He, D. Li, L. Zhang, Z. Du, K. Zhang, S. Goodin, and X. Zheng (2019). Effects and mechanism of inhibition of naringin in combination with atorvastatin on prostate cancer cells in vitro and in vivo. Phytochem. Lett. 32,168-176.

    Article  CAS  Google Scholar 

  9. [9] S.L. Hsiu, T.Y. Huang, Y.C. Hou, D.H. Chin, and P.D. Chao (2002). Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci, 70 (13), 1481-1489.

    Article  PubMed  CAS  Google Scholar 

  10. [10] M. Liu, W. Zou, C.Yang, Peng, and W. Su (2012). Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm. Drug. Dispos. 33(3), 123-134.

    Article  PubMed  CAS  Google Scholar 

  11. [11] T. Chen, W. Su, Z. Yan, X. Zeng, W. Peng, L. Gan, Y. Zhang, and H. Yao (2018). Identification of naringhin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 161, 262-272.

    Article  PubMed  CAS  Google Scholar 

  12. [12] E.A. Mohamed, R.M. Abu Hashim, A.A.A. Yusif, A.R. Shaaban, M.F. El-Sheakh, M.F. Hamed, and F.A.E. Badria (2018). Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. Int. J. Nanomedicine. 13, 1009-1027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. [13] D.A. Pai, V.R. Vangala, J.W. Ng, W.K. Ng, and R.B.H. Tan (2015). Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization. J. Food Eng. 161, 68-74.

    Article  CAS  Google Scholar 

  14. [14] M. Pleguezuelos-Villa, S. Mir-Palomo, O. Díez-Sales, M.A.O V. Buso, A.R. Sauri, and A. Nácher (2018). A novel ultradeformable liposomes of Naringin for anti-inflammatory therapy. Colloids Surf. B Biointerfaces. 162, 265-270.

    Article  PubMed  CAS  Google Scholar 

  15. [15] M.R. Lauro, F. De Simone, F. Sansone, P. Iannelli, and R.P. Aquino (2007). Preparations and release characteristics of naringin and naringenin gastro-resistant microparticles by spray-drying. J. Drug Deliv. Sci. Technol. 17, 119-124.

    Article  CAS  Google Scholar 

  16. [16] T. Feng, K. Wang, F. Liu, R. Ye, X. Zhu, H. Zhuang, and Z. Xu (2017). Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, -linoleic acid and-lactoglobulincomplexed with naringin. Int. J. Biol. Macromol. 99, 365-374.

    Article  PubMed  CAS  Google Scholar 

  17. [17] K. Ghosal, D. Ghosh, and S.K. Das (2018). Preparation and evaluation of naringin-loaded polycaprolactone microspheres based oral suspension using Box-Behnken design. J. Mol. Liq. 256, 49-57.

    Article  CAS  Google Scholar 

  18. [18] A. Shpigelman, Y. Shoham, G. Israeli-Lev, and Y.D Livney (2014). b-Lactoglobulinenaringenin complexes, nano-vehicles for the delivery of a hydrophobic nutraceutical. Food Hydrocoll. 40, 214-224.

    Article  CAS  Google Scholar 

  19. [19] A.O. Elzoghby, W.M. Samy, and N.A. Elgindy (2012). Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release. 161(1), 38-49.

    Article  PubMed  CAS  Google Scholar 

  20. [20] A.R. Patel, E.C.M. Bouwens, and K.P. Velikov (2010). Sodium Caseinate Stabilized Zein Colloidal Particles. J. Agric. Food Chem. 58 (23), 12497-12503.

    Article  PubMed  CAS  Google Scholar 

  21. [21] Y. Luo, Z. Teng, T.T. Wang, and Q. Wang (2013). Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J. Agric. Food Chem. 61(31), 7621-7629.

    Article  PubMed  CAS  Google Scholar 

  22. [22] A.R. Patel, P.C.M. Heussen, J. Hazekamp, E. Drost, and K.P. Velikov (2012). Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chem. 133(2), 423-429.

    Article  PubMed  CAS  Google Scholar 

  23. [23] S. Dahiya, R. Rani, D. Dhingra, S. Kumar, and N. Dilbaghi (2018). Conjugation of epigallocatechingallate and piperine into a zeinnanocarrier: implication on antioxidant and anticancer potential, Adv. Nat. Sci. Nanosci. Nanotechnol. 9(3), 035011.

    Article  CAS  Google Scholar 

  24. [24] Q. Liu, Y. Jing, C.Han, H. Zhang, and Y. Tian (2019). Encapsulation of curcumin in zein/ caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties, Food Hydrocoll. 93, 432-442.

    Article  CAS  Google Scholar 

  25. [25] P. Ji, T. Yu, Y. Liu, J. Jiang, J. Xu, Y. Zhao, Y. Hao, Y. Qiu, W. Zhao, and C. Wu (2016). Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics, Drug Des. Devel. Ther. 10, 911-925.

    CAS  Google Scholar 

  26. [26] N. Ilaiyaraja, D. Aishwarya, and K. Farhath (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J. Pharm. Sci.10, 203-211.

    Article  Google Scholar 

  27. [27] Y. Carmona-Jiménez, M.V. García-Moreno, J.M. Igartuburu, and C.G. Garcia Barroso (2014). Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chem. 165, 198-204.

    Article  PubMed  CAS  Google Scholar 

  28. H. Jayan, M.M. Leena S.K.S. Sundari, J.A. Moses, and C. Anandharamakrishnan, Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. J. Funct. Foods. 57, 417–424.

  29. [29] S. Zhang, and Y. Han (2018). Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles. PLoS One. 13(3), e0194951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. [30] H. Chen, and Q. Zhong (2015). A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocoll. 43, 593-602.

    Article  CAS  Google Scholar 

  31. [31] D. Zheng, and Q.F. Zhang (2019). Bioavailability enhancement of astilbin in rat through zein-caseinate nanoparticles. J. Agric. Food Chem. 67, 5746-5753.

    Article  PubMed  CAS  Google Scholar 

  32. [32] Y. Wu, Y. Luo, and Q. Wang (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT - Food Sci. Technol. 48, 283-290.

    Article  CAS  Google Scholar 

  33. [33] C. Chang, T. Wang, Q. Hu, and Y. Luo (2017). Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: Effect of polysaccharide type and chemical cross-linking. Food Hydrocoll. 72, 254-262.

    Article  CAS  Google Scholar 

  34. [34] J. Xue, Y. Zhang, G. Huang, J. Liu, M. Slavin, and L. Yu (2018). Zein-caseinate composite nanoparticles for bioactive delivery using curcumin as a probe compound. Food Hydrocoll. 83, 25-35.

    Article  CAS  Google Scholar 

  35. [35] F. Zhang, M.A. Khan, H. Cheng, and L. Liang (2019). Co-encapsulation of α-tocopherol and resveratrol within zein nanoparticles: Impact on antioxidant activity and stability. J. Food Eng. 247, 9-18.

    Article  CAS  Google Scholar 

  36. [36] H. Li, Y. Xua, X. Sun, S. Wang, J. Wang, J. Zhud, D. Wang, and L. Zhao (2018). Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation. Food Hydrocoll. 84, 379-388.

    Article  CAS  Google Scholar 

  37. [37] P. Hurtado-López, and S. Murdan (2005). Formulation and characterisation of zein microspheres as delivery vehicles. J. Drug Deliv. Sci. Technol. 15(4), 267-272.

    Article  Google Scholar 

  38. Y. Luo, B. Zhang, M. Whent, L. Yu, and Q. Wang (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf.B Biointerfaces. 85(2), 145–152.

  39. [39] M. Wang, Y. Fu, G. Chen, Y. Shi, X. Li, H. Zhang, and Y. Shen (2018). Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate b-carotene by anti-solvent precipitation method. Food Hydrocoll. 77, 577-587.

    Article  CAS  Google Scholar 

  40. [40] Y. Chen, Z. Zhenlei, X. Guobin, X. Fan, C. Chun, and Z. Ying (2020). Fabrication and characterization of zein/lactoferrin composite nanoparticles for encapsulating 7, 8-dihydroxyflavone: Enhancement of stability, water solubility and bioaccessibility. Int. J. Biol. Macromol146, 179-192.

    Article  PubMed  CAS  Google Scholar 

  41. [41] F. Dong, X. Dong, L. Zhou, H. Xiao, P.Y. Ho, M.S. Wong, and Y. Wang (2016). Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake. Colloids Surf B Biointerfaces. 140, 324-331.

    Article  PubMed  CAS  Google Scholar 

  42. [42] M. Bacanli, A.A. Başaran, and N. Başaran (2015). The antioxidant and anti-genotoxic properties of citrus phenolics limonene and naringin. Food Chem. Toxicol. 81,160-170.

    Article  PubMed  CAS  Google Scholar 

  43. [43] R. Roghini, and K. Vijayalakshmi (2018). Free radical scavenging activity of ethanolic extract of citrus paradisi and naringin -An In vitro Study. Int. J. Pharmacogn. Phytochem. Res. 10(1), 11-16.

    Google Scholar 

  44. [44] S.H. Bok, Y.W. YW, K.H. Bae, T.S. Jeong, Y.K. Kwon, and Y.B. Park (2000). Effects of naringin and lovastatin on plasma and hepatic lipids in high-fat and high-cholesterol fed rats. Nutrition Res. 20, 1007-15.

    Article  CAS  Google Scholar 

  45. [45] X. Guo, J. Liu, S. Cai, O. Wang, and B. Ji (2016). Synergistic interactions of apigenin, naringin, quercetin and emodin on inhibition of 3T3-L1 preadipocyte differentiation and pancreas lipase activity. Obesity Res. Clinic. Practice. 10, 327-339.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Defence Research and Development Organisation (DRDO), New Delhi

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaiyaraja Nallamuthu.

Ethics declarations

Conflict of Interest

The authors of the manuscript have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nallamuthu, I., Ponnusamy, V., Smruthi, M.R. et al. Formulation of Naringin Encapsulation in Zein/Caseinate Biopolymers and its Anti-adipogenic Activity in 3T3-L1 Pre-adipocytes. J Clust Sci 32, 1649–1662 (2021). https://doi.org/10.1007/s10876-020-01909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01909-1

Keywords

Navigation