Skip to main content
Log in

Effect of Ferric Chloride Concentration on the Type of Magnetite (Fe3O4) Nanoparticles Biosynthesized by Aqueous Leaves Extract of Artemisia and Assessment of Their Antioxidant Activities

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, green synthesis of iron oxide magnetite (Fe3O4-NPs) was successfully prepared from Artemisia leaves extract and Assessment of Their Antioxidant Activities. The effect of different ferric chloride concentrations 0.01-0.1 M on the nanoparticles’ iron oxide formation was studied. The obtained Fe3O4 nanoparticles were characterized using various techniques, such as UV–Visible, FT-IR, XRD, SEM and EDAX are used for this purpose. The antioxidant activity of Fe3O4-NPs was determined by total antioxidant capacity (TAC), DPPH• (2, 2- diphenyl-1-picrylhydrazyl), FRAP (Ferric ion reducing antioxidant power assay) assays. In addition, UV–Vis spectra showed maximum absorption at range 275–301 nm related to the Fe3O4-NPs. FTIR spectra exhibit a two weak peak at 510 and 594 cm−1 attributed to Fe3O4-NPs vibration, confirming the formation nanoparticles XRD confirmed the crystalline nature of Fe3O4-NPs with average size ranged in 19–24 nm. SEM showed that the green synthesizing magnetite nanoparticles having in general as cubical shape. The purpose of this study, it highlights the high antioxidant activity of magnetite Fe3O4-NPs green synthesized, as a result, the use of Artemisia leaves extract offers its ease, fast, low-cost and friendly to the environment compared to other synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

IONPs:

Iron oxide nanoparticles

NPs:

Nanoparticles

References

  1. J. Sivakumar, C. Premkumar, P. Santhanam, and N. Saraswathi (2011). Afr. J. Basic Appl. Sci. 3, 1.

    Google Scholar 

  2. M. Zare, K. Namratha, S. Alghamdi, Y. H. E. Mohammad, A. Hezam, M. Zare, Q. A. Drmosh, K. Byrappa, B. N. Chandrashekar, S. Ramakrishna, and X. Zhang (2019). Scientific Reports. 9, (1), 8303. https://doi.org/10.1038/s41598-019-44309-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. A. Naseer, A. Ali, S. Ali, A. Mahmood, H. Kusuma, A. Nazir, M. Yaseen, M. Khan, A. Ghaffar, and M. Abbas (2020). J. Mater. Res. Technol. 9, (4), 9093–9107.

    Article  CAS  Google Scholar 

  4. G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma, and R. P. Singh (2011). J. Nanopart. Res. 13, (7), 2981–2988. https://doi.org/10.1007/s11051-010-0193-y.

    Article  CAS  Google Scholar 

  5. C. Vidya, S. Hiremath, M. Chandraprabha, M. L. Antonyraj, I. V. Gopal, A. Jain, and K. Bansal (2013). Int. J. Curr. Eng. Technol. 1, 118–120.

    Google Scholar 

  6. S. Talam, S. R. Karumuri, and N. Gunnam (2012). ISRN Nanotechnology. 2012, 6. https://doi.org/10.5402/2012/372505.

    Article  CAS  Google Scholar 

  7. P. Karpagavinayagam and C. Vedhi (2019). Vacuum. 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043.

    Article  CAS  Google Scholar 

  8. M. S. Kubde, S. Khadabadi, I. Farooqui, and S. Deore (2010). Rep. Opin. 2, (3), 91–98. https://doi.org/10.7537/marsroj021210.01.

    Article  Google Scholar 

  9. M. Pattanayak and P. Nayak (2013). World J. Nano Sci. Technol. 2, (1), 06–09. https://doi.org/10.5829/idosi.wjnst.2013.2.1.21132.

    Article  Google Scholar 

  10. A. Singh, D. Jain, M. Upadhyay, N. Khandelwal, and H. Verma (2010). Dig. J. Nanomater Biosci. 5, (2), 483–489.

    Google Scholar 

  11. M. Ramya and M. S. Subapriya (2012). Int J Pharm Med Biol Sci. 1, (1), 54–61.

    CAS  Google Scholar 

  12. S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, and Q. Zhang (2007). Green Chem. 9, (8), 852–858. https://doi.org/10.1039/b615357g.

    Article  CAS  Google Scholar 

  13. T. Shahwan, S. A. Sirriah, M. Nairat, E. Boyacı, A. E. Eroğlu, T. B. Scott, and K. R. Hallam (2011). Chem. Eng. J. 172, (1), 258–266. https://doi.org/10.1016/j.cej.2011.05.103.

    Article  CAS  Google Scholar 

  14. A. Bouafia and S. E. Laouini (2020). Mater. Lett. 265, 127364. https://doi.org/10.1016/j.matlet.2020.127364.

    Article  CAS  Google Scholar 

  15. A. Bouafia, S. E. Laouini, and M. R. Ouahrani (2020). Asian J. Res. Chem. 13, (1), 65–70.

    Article  Google Scholar 

  16. J. E. Wong-Paz, D. B. Muñiz-Márquez, P. Aguilar-Zárate, R. Rodríguez-Herrera, and C. N. Aguilar (2014). Phytochem. Analy. 25, (5), 439–444. https://doi.org/10.1002/pca.2512.

    Article  CAS  Google Scholar 

  17. I. F. F. Benzie and J. J. Strain (1996). Analy. Biochem. 239, (1), 70–76. https://doi.org/10.1006/abio.1996.0292.

    Article  CAS  Google Scholar 

  18. B. Bozin, N. Mimica-Dukic, I. Samojlik, A. Goran, and R. Igic (2008). Food Chem. 111, (4), 925–929. https://doi.org/10.1016/j.foodchem.2008.04.071.

    Article  CAS  Google Scholar 

  19. H. Allam, H. Benamar, R. Mansour, R. Ksouri, and M. Bennaceur (2019). J. Herbs Spices Med. Plants. 25, (4), 347–362. https://doi.org/10.1080/10496475.2019.1631928.

    Article  CAS  Google Scholar 

  20. S. Groiss, R. Selvaraj, T. Varadavenkatesan, and V. Ramesh (2016). J. Mol. Struct.. https://doi.org/10.1016/j.molstruc.2016.09.031.

    Article  Google Scholar 

  21. D. Rehana, D. Mahendiran, R. S. Kumar, and A. K. Rahiman (2017). Bioprocess Biosyst. Eng. 40, (6), 943–957. https://doi.org/10.1007/s00449-017-1758-2.

    Article  PubMed  CAS  Google Scholar 

  22. H. El Ghandoor, H. Zidan, M. M. Khalil, and M. Ismail (2012). Int. J. Electrochem. Sci. 7, (6), 5734–5745.

    Google Scholar 

  23. F. A. Al-Bayati (2009). Ann. Clin. Microbiol. Antimicrob. 8, 20. https://doi.org/10.1186/1476-0711-8-20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. M. Ismail, M. I. Khan, K. Akhtar, M. A. Khan, A. M. Asiri, and S. B. Khan (2018). Physica E 103, 367–376. https://doi.org/10.1016/j.physe.2018.06.015.

    Article  CAS  Google Scholar 

  25. M. Khan, M. Khan, S. F. Adil, M. N. Tahir, W. Tremel, H. Z. Alkhathlan, A. Al-Warthan, and M. R. H. Siddiqui (2013). Int. J. Nanomed. 8, 1507.

    Google Scholar 

  26. M. Nasrollahzadeh, M. Maham, and S. M. Sajadi (2015). J. Coll. Interface Sci. 455, 245–253.

    Article  CAS  Google Scholar 

  27. M. Masikini, University of the Western Cape, 2010.

  28. D. Yufanyi, A. Ondoh, J. Foba-Tendo, and K. Mbadcam (2015). Am. J. Chem. 5, (1), 1–9.

    Article  Google Scholar 

  29. S. Karlapudi, C. Prasad, S. Himagirish Kumar, N. Jyothi, P. Venkateswarlu,

  30. R. Yuvakkumar, S.I. Hong (2014). Adv. Mat. Res. 1051, 39–42. https://doi.org/10.4028/www.scientific.net/AMR.1051.39.

  31. J. A. A. Abdullah, L. Eddine, B. Abderrhmane, M. Alonso-González, A. Guerrero, and A. Romero (2020). Sustain. Chem. Pharm. 17, 100280. https://doi.org/10.1016/j.scp.2020.100280.

    Article  Google Scholar 

  32. P. Scherrer (1918). Mathematisch-Physikalische Klasse. 2, 98–100.

    Google Scholar 

  33. N. Belkheiri, Université de Toulouse, Université Toulouse III-Paul Sabatier, 2010.

  34. A. Mansouri, G. Embarek, E. Kokkalou, and P. Kefalas (2005). Food Chem. 89, (3), 411–420. https://doi.org/10.1016/j.foodchem.2004.02.051.

    Article  CAS  Google Scholar 

  35. D. Prakash, S. Suri, G. Upadhyay, B.N. Singh. Int. J. Food Sci. Nutr. 58(1): 18-28 (2007). https://doi.org/10.1080/09637480601093269

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrhmane Bouafia.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouafia, A., Laouini, S.E., Khelef, A. et al. Effect of Ferric Chloride Concentration on the Type of Magnetite (Fe3O4) Nanoparticles Biosynthesized by Aqueous Leaves Extract of Artemisia and Assessment of Their Antioxidant Activities. J Clust Sci 32, 1033–1041 (2021). https://doi.org/10.1007/s10876-020-01868-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01868-7

Keywords

Navigation