Skip to main content
Log in

Dynamic Light Scattering and Image Analysis of FePt Based Nanoparticles from Size-Selective Precipitation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanoseparation was performed on iron-platinum based nanoparticles from the reaction between iron(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionate) and platinum(II) acetylacetonate. Dynamic Light Scattering (DLS) provided a rapid and effective technique to monitor the classification of these polydisperse nanoparticles. After the size-selective precipitation, the nanoparticles were separated into 2 groups with different hydrodynamic diameters. In additions, the storage time and additional surfactants also increased the size distribution of nanoparticles. After the repeated size-selective precipitation, the hydrodynamic diameter was reduced to 7.8 nm and the particle diameter of 3.4 nm was averaged from Transmission Electron Microscopy (TEM). Furthermore, the TEM image processing was used to demonstrate the correlation between the size distribution of nanoparticles from the repeated size-selective precipitation and their self-assembly on liquid as well as solid substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. V. Mehta (2017). Mater. Sci. Eng. C79, 901.

    Article  CAS  Google Scholar 

  2. N. Shin, K. Saravanakumar, and M. H. Wang (2019). J. Clust. Sci.30, 669.

    Article  CAS  Google Scholar 

  3. B. Kowalczyk, I. Lagzi, and B. A. Grzybowski (2011). Curr. Opin. Colloid Interface Sci.16, 135.

    Article  CAS  Google Scholar 

  4. Y. Mori (2015). Kona Powder Part. J.32, 102.

    Article  CAS  Google Scholar 

  5. S. A. Tovstun and V. F. Razumov (2017). J. Nanopart. Res.19, 8.

    Article  Google Scholar 

  6. D. Segets, S. Komada, B. Butz, E. Spiecker, Y. Mori, and W. Peukert (2013). J. Nanopart. Res.15, 1486.

    Article  Google Scholar 

  7. J. K. Lim, S. P. Yeap, H. X. Che, and S. C. Low (2013). Nanoscale Res. Lett.8, 381.

    Article  Google Scholar 

  8. P. Sarmphim, K. Chokprasombat, C. Sirisathitkul, Y. Sirisathitkul, K. Ratchaphonsaenwong, S. Pinitsoontorn, and P. Harding (2016). J. Clust. Sci.27, 1.

    Article  CAS  Google Scholar 

  9. K. Chokprasombat, Y. Sirisathitkul, C. Sirisathitkul, P. Sarmphim, and P. Harding (2015). J. Supercond. Nov. Magn.28, 1199.

    Article  CAS  Google Scholar 

  10. Y. Zhou, M. Su, and X. Cai (2017). Kona Powder Part. J.34, 168.

    Article  Google Scholar 

  11. L. Liu, X. Cai, J. Zhang, and C. Xu (2015). Acta Opt. Sin.35, 0529001.

    Article  Google Scholar 

  12. Z. Zhao, A. Fisher, Y. Shen, and D. Cheng (2016). J. Clust. Sci.27, 817.

    Article  CAS  Google Scholar 

  13. S. S. K. Kamal, P. K. Sahoo, L. Durai, P. Ghosal, S. Ram, and M. Raja (2010). J. Alloy. Compd.501, 297.

    Article  Google Scholar 

  14. S. Sun (2006). Adv. Mater.18, 393.

    Article  CAS  Google Scholar 

  15. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser (2000). Science287, 1989.

    Article  CAS  Google Scholar 

  16. Q. Guo, X. Teng, and H. Yang (2004). Adv. Mater.16, 1337.

    Article  CAS  Google Scholar 

  17. H. Zeynali, S. A. Sebt, H. Arabi, and H. Akbari (2012). J. Clust. Sci.23, 1107.

    Article  CAS  Google Scholar 

  18. A. D. Crisan, J. Bednarcik, S. Michalik, and O. Crisan (2014). J. Alloy. Compd.615, S188.

    Article  CAS  Google Scholar 

  19. Y. Wang, M. L. Yang, B. Xu, Z. Yang, N. T. Hu, L. M. Wei, B. C. Cai, and Y. F. Zhang (2014). J. Colloid Interf. Sci.417, 100.

    Article  CAS  Google Scholar 

  20. Y. Fujihira, T. Hachisu, S. Shitanda, K. Aikawa, A. Sugiyama, J. Mizuno, S. Shoji, T. Asahi, and T. Osaka (2016). J. Electrochem. Soc.163, D171.

    Article  CAS  Google Scholar 

  21. R. Medwal, N. Sehdev, and S. Annapoorni (2013). J. Nanopart. Res.15, 1423.

    Article  Google Scholar 

  22. P. Sarmphim and C. Sirisathitkul (2019). Mater. Lett.248, 36.

    Article  CAS  Google Scholar 

  23. V. Nandwana, K. E. Elkins, N. Poudyal, G. S. Chaubey, K. Yano, and J. P. Liu (2007). J. Phys. Chem. C111, 4185.

    Article  CAS  Google Scholar 

  24. S. A. Sebt, S. S. Parhizgar, M. Farahmandjou, P. Aberomand, and M. Akhavan (2009). J. Supercond. Nov. Magn.22, 849.

    Article  CAS  Google Scholar 

  25. M. Farahmandjou (2012). J. Supercond. Nov. Magn.25, 2075.

    Article  CAS  Google Scholar 

  26. P. Sarmphim, P. Jantaratana, and C. Sirisathitkul (2019). J. Nanomater.2018, 3248051.

    Google Scholar 

Download references

Acknowledgments

This work is funded by the Thailand Excellent Center in Physics under Grant Number ThEP-60-PIP-WU3. This research was partially supported by the New Strategic Research (P2P) project, Walailak University, Thailand. The authors would like to thank P. Harding of Walailak University for her suggestions. The technical assistance in TEM imaging by P. Pinsrithong of Scientific Equipment Center, Prince of Songkla University, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowarat Sirisathitkul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmphim, P., Sirisathitkul, Y., Polprasarn, K. et al. Dynamic Light Scattering and Image Analysis of FePt Based Nanoparticles from Size-Selective Precipitation. J Clust Sci 31, 421–428 (2020). https://doi.org/10.1007/s10876-019-01655-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01655-z

Keywords

Navigation